Qu'est-ce que l'analyse prédictive ?

L'analyse prédictive est une forme avancée d'analyse des données qui tente de répondre à la question suivante : "Que pourrait-il se passer ensuite ?". En tant que branche des sciences des données pour les entreprises, la croissance des analyses prédictives et optimisées coïncide avec celle des systèmes de big data : des pools de données plus grands et plus vastes permettent d'accroître les activités d'exploration de données afin de fournir des insights prédictifs. Les progrès réalisés dans les domaines du big data et du machine learning ont également permis d'étendre les fonctionnalités d'analyse prédictive.

La croissance des analyses prédictives et optimisées coïncide avec celle des systèmes de big data, où de plus grands pools de données permettent d'accroître les activités d'exploration de données pour fournir des insights prédictifs. Les progrès réalisés dans les domaines du big data et du machine learning ont également permis d'étendre les fonctionnalités d'analyse prédictive.

Découvrez comment les solutions d'analyse de données, de machine learning et d'intelligence artificielle de Google Cloud permettent à votre entreprise de fonctionner plus simplement et plus rapidement grâce à l'analyse prédictive.

Définition de l'analyse prédictive

L'analyse prédictive consiste à utiliser des données pour prédire les résultats futurs. Ce processus utilise l'analyse des données, le machine learning, l'intelligence artificielle et les modèles statistiques pour identifier des tendances susceptibles de prédire les comportements futurs. Les organisations peuvent utiliser des données historiques et actuelles pour prévoir de manière fiable et précise les tendances et les comportements à quelques secondes, jours ou années dans le futur. 

Comment fonctionne l'analyse prédictive ?

Les data scientists utilisent des modèles prédictifs pour identifier des corrélations entre différents éléments dans des ensembles de données sélectionnés. Une fois la collecte de données terminée, un modèle statistique est formulé, entraîné et modifié pour générer des prédictions.

Le workflow pour la création des frameworks d'analyse prédictive comporte cinq étapes de base :

  1. Définir le problème : une prédiction commence par une bonne problématique et un ensemble d'exigences. Par exemple, un modèle d'analyse prédictive peut-il détecter une fraude ? Déterminer les niveaux d'inventaire optimaux pour la période des fêtes de fin d'année ? Identifier les niveaux d'inondations potentiels en cas d'intempéries ? Un problème à résoudre clairement établi aidera à déterminer la méthode d'analyse prédictive à utiliser.
  2. Collecter et organiser les données : une entreprise peut avoir des décennies de données à exploiter, ou un afflux continu de données provenant des interactions client. Avant de pouvoir développer des modèles d'analyse prédictive, vous devez identifier les flux de données, puis organiser les ensembles de données dans un dépôt, par exemple un entrepôt de données comme BigQuery.
  3. Prétraiter les données : les données brutes n'ont qu'une utilité nominale en soi. Pour préparer les données qui seront utilisées dans les modèles d'analyse prédictive, elles doivent auparavant être nettoyées en vue de supprimer les anomalies, les points de données manquants ou les valeurs aberrantes qui peuvent être le résultat d'erreurs de saisie ou de mesure. 
  4. Développer des modèles prédictifs : les data scientists disposent de divers outils et techniques pour développer des modèles prédictifs, en fonction du problème à résoudre et de la nature de l'ensemble de données. Le machine learning, les modèles de régression et les arbres de décision comptent parmi les types de modèles prédictifs les plus courants.
  5. Valider et déployer les résultats : vérifiez la justesse du modèle et ajustez-le en conséquence. Après obtention de résultats acceptables, mettez-les à la disposition des personne concernées via une application, un site web ou un tableau de bord de données.

Que sont les techniques d'analyse prédictive ?

En règle générale, il existe deux types de modèles d'analyse prédictive : les modèles de classification et de régression. Les modèles de classification tentent de placer des objets de données (tels que des clients ou des résultats potentiels) dans une catégorie ou une autre. Par exemple, si un marchand dispose de nombreuses données sur différents types de clients, il peut essayer de prédire quels types de clients seront réceptifs aux e-mails marketing. Les modèles de régression tentent de prédire des données continues, telles que le revenu que va générer un client au cours de sa relation avec l'entreprise. 

L'analyse prédictive est généralement réalisée selon trois grands types de techniques :

Analyse de régression

La régression est une technique d'analyse statistique qui permet d'estimer les relations entre les variables. La régression est utile pour déterminer les tendances dans des ensembles de données volumineux afin d'établir une corrélation entre les entrées. Il est préférable de l'employer sur des données continues suivant une distribution connue. La régression est souvent utilisée pour déterminer comment une ou plusieurs variables indépendantes affectent une autre, par exemple l'impact d'une augmentation de prix sur la vente d'un produit.

Arbres de décision

Les arbres de décision sont des modèles de classification qui placent les données dans différentes catégories en fonction de variables distinctes. Cette méthode est surtout utile pour tenter de comprendre les décisions d'un individu. Le modèle ressemble à un arbre, où chaque branche représente un choix potentiel, et la feuille de la branche représente le résultat de la décision. Les arbres de décision sont généralement faciles à comprendre et fonctionnent bien lorsqu'il manque plusieurs variables dans un ensemble de données.

Réseaux de neurones

Les réseaux de neurones sont des méthodes de machine learning utiles pour l'analyse prédictive lors de la modélisation de relations très complexes. En résumé, il s'agit de puissants moteurs de reconnaissance de formes. Les réseaux de neurones sont surtout utilisés pour déterminer les relations non linéaires dans les ensembles de données, notamment lorsqu'il n'existe aucune formule mathématique connue pour analyser les données. Les réseaux de neurones peuvent être utilisés pour valider les résultats des arbres de décision et des modèles de régression.

Relevez vos plus grands défis avec Google Cloud

Les nouveaux clients bénéficient de 300 $ de crédits à dépenser sur Google Cloud.
Contactez un spécialiste des ventes Google Cloud pour discuter plus en détail de votre propre défi.

Utilisations et exemples d'analyse prédictive

L'analyse prédictive peut être utilisée pour optimiser les opérations, augmenter les revenus et limiter les risques pour la quasi-totalité des entreprises ou des secteurs, y compris la banque, le commerce de détail, l'énergie, le secteur public, la santé et l'industrie. Parfois, des analyses sont optimisées à l'aide du machine learning pour le big data. Voici d'autres exemples de cas d'utilisation, comme l'analyse de lac de données.

Détection de fraudes

L'analyse prédictive examine toutes les actions en temps réel sur le réseau d'une entreprise afin d'identifier les anomalies susceptibles d'indiquer des fraudes et d'autres failles.

Prédiction des conversions et des achats

Les entreprises peuvent effectuer des actions, telles que le reciblage des annonces en ligne sur les visiteurs, grâce à des données permettant de prédire une probabilité plus élevée de conversion et d'intention d'achat.

Réduction des risques

Dans les domaines de la cote de crédit, de l'assurance et du recouvrement de créances, l'analyse prédictive permet d'évaluer les défaillances à venir et d'en déterminer la probabilité.

Amélioration opérationnelle

Les entreprises utilisent des modèles d'analyse prédictive pour prévoir l'inventaire, gérer les ressources et fonctionner plus efficacement.

Segmentation de la clientèle

En divisant une base de clients en groupes spécifiques, les marketeurs peuvent utiliser l'analyse prédictive pour prendre des décisions prospectives et adapter le contenu à des audiences uniques. 

Prévisions de maintenance

Les organisations se basent sur les données afin de prédire à quel moment des opérations de maintenance de routine seront nécessaires. Celles-ci peuvent ensuite être programmées avant qu'un problème ou des dysfonctionnements surviennent.

Passez à l'étape suivante

Profitez de 300 $ de crédits gratuits et de plus de 20 produits Always Free pour commencer à créer des applications sur Google Cloud.

  • Faites des économies grâce à notre approche transparente concernant la tarification
  • Le paiement à l'usage de Google Cloud permet de réaliser des économies automatiques basées sur votre utilisation mensuelle et des tarifs réduits pour les ressources prépayées. Contactez-nous dès aujourd'hui afin d'obtenir un devis.
Google Cloud