Geografische Abfragen

Viele Anwendungen haben Dokumente, die nach physischen Speicherorten indexiert sind. Mit Ihrer Anwendung können Nutzer beispielsweise Geschäfte in der Nähe ihres aktuellen Standorts durchsuchen.

Lösung: Geohashes

Geohash ist ein System zum Codieren eines (latitude, longitude)-Paars in einen einzelnen Base32-String. Im Geohash-System wird die Welt in ein rechteckiges Raster unterteilt. Jedes Zeichen eines Geohash-Strings gibt eine von 32 Unterteilungen des Präfix-Hash an. Der Geohash abcd ist beispielsweise einer von 32 vierstelligen Hashes, die vollständig im größeren Geohash abc enthalten sind.

Je länger das gemeinsame Präfix zwischen zwei Hashes ist, desto näher sind sie voneinander. abcdef ist beispielsweise näher an abcdeg als abcdff. Umgekehrt gilt es jedoch nicht. Zwei Bereiche können sehr nahe beieinander liegen, aber mit sehr unterschiedlichen Geohashen:

Weit entfernte Geohashes

Wir können Geohashes verwenden, um Dokumente in Firestore mit angemessener Effizienz nach Position zu speichern und abzufragen, wobei nur ein einziges indexiertes Feld erforderlich ist.

Hilfsbibliothek installieren

Das Erstellen und Parsen von Geohashen erfordert einige knifflige Berechnungen. Daher haben wir Hilfsbibliotheken erstellt, um die schwierigsten Teile auf Android, auf Apple und im Web zusammenzufassen:

Webversion 9

// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common

Webversion 8

// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common

Swift

Hinweis: Dieses Produkt nicht ist auf WatchOS- und App Clip-Zielen verfügbar.
// Fügen Sie dies Ihrem Podfile-Pod „GeoFire/Utils” hinzu

Kotlin+KTX
Android

// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.2.0'

Java
Android

// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.1.0'

Geohash speichern

Für jedes Dokument, das Sie nach Speicherort indexieren möchten, müssen Sie ein Geohash-Feld speichern:

Webversion 9

import { doc, updateDoc } from 'firebase/firestore';

// Compute the GeoHash for a lat/lng point
const lat = 51.5074;
const lng = 0.1278;
const hash = geofire.geohashForLocation([lat, lng]);

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
const londonRef = doc(db, 'cities', 'LON');
await updateDoc(londonRef, {
  geohash: hash,
  lat: lat,
  lng: lng
});

Webversion 8

// Compute the GeoHash for a lat/lng point
const lat = 51.5074;
const lng = 0.1278;
const hash = geofire.geohashForLocation([lat, lng]);

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
const londonRef = db.collection('cities').doc('LON');
londonRef.update({
  geohash: hash,
  lat: lat,
  lng: lng
}).then(() => {
  // ...
});

Swift

Hinweis: Dieses Produkt nicht ist auf WatchOS- und App Clip-Zielen verfügbar.
// Compute the GeoHash for a lat/lng point
let latitude = 51.5074
let longitude = 0.12780
let location = CLLocationCoordinate2D(latitude: latitude, longitude: longitude)

let hash = GFUtils.geoHash(forLocation: location)

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
let documentData: [String: Any] = [
  "geohash": hash,
  "lat": latitude,
  "lng": longitude
]

let londonRef = db.collection("cities").document("LON")
londonRef.updateData(documentData) { error in
  // ...
}

Kotlin+KTX
Android

// Compute the GeoHash for a lat/lng point
val lat = 51.5074
val lng = 0.1278
val hash = GeoFireUtils.getGeoHashForLocation(GeoLocation(lat, lng))

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
val updates: MutableMap<String, Any> = mutableMapOf(
    "geohash" to hash,
    "lat" to lat,
    "lng" to lng,
)
val londonRef = db.collection("cities").document("LON")
londonRef.update(updates)
    .addOnCompleteListener {
        // ...
    }

Java
Android

// Compute the GeoHash for a lat/lng point
double lat = 51.5074;
double lng = 0.1278;
String hash = GeoFireUtils.getGeoHashForLocation(new GeoLocation(lat, lng));

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
Map<String, Object> updates = new HashMap<>();
updates.put("geohash", hash);
updates.put("lat", lat);
updates.put("lng", lng);

DocumentReference londonRef = db.collection("cities").document("LON");
londonRef.update(updates)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // ...
            }
        });

Geohash abfragen

Geohashes ermöglichen es uns, die Gebietsabfragen mithilfe eines Satzes von Abfragen im Feld „Geohash“ ungefähr zu lösen und anschließend einige falsch-positive Ergebnisse herauszufiltern:

Webversion 9

import { collection, query, orderBy, startAt, endAt, getDocs } from 'firebase/firestore';

// Find cities within 50km of London
const center = [51.5074, 0.1278];
const radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
const bounds = geofire.geohashQueryBounds(center, radiusInM);
const promises = [];
for (const b of bounds) {
  const q = query(
    collection(db, 'cities'), 
    orderBy('geohash'), 
    startAt(b[0]), 
    endAt(b[1]));

  promises.push(getDocs(q));
}

// Collect all the query results together into a single list
const snapshots = await Promise.all(promises);

const matchingDocs = [];
for (const snap of snapshots) {
  for (const doc of snap.docs) {
    const lat = doc.get('lat');
    const lng = doc.get('lng');

    // We have to filter out a few false positives due to GeoHash
    // accuracy, but most will match
    const distanceInKm = geofire.distanceBetween([lat, lng], center);
    const distanceInM = distanceInKm * 1000;
    if (distanceInM <= radiusInM) {
      matchingDocs.push(doc);
    }
  }
}

Webversion 8

// Find cities within 50km of London
const center = [51.5074, 0.1278];
const radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
const bounds = geofire.geohashQueryBounds(center, radiusInM);
const promises = [];
for (const b of bounds) {
  const q = db.collection('cities')
    .orderBy('geohash')
    .startAt(b[0])
    .endAt(b[1]);

  promises.push(q.get());
}

// Collect all the query results together into a single list
Promise.all(promises).then((snapshots) => {
  const matchingDocs = [];

  for (const snap of snapshots) {
    for (const doc of snap.docs) {
      const lat = doc.get('lat');
      const lng = doc.get('lng');

      // We have to filter out a few false positives due to GeoHash
      // accuracy, but most will match
      const distanceInKm = geofire.distanceBetween([lat, lng], center);
      const distanceInM = distanceInKm * 1000;
      if (distanceInM <= radiusInM) {
        matchingDocs.push(doc);
      }
    }
  }

  return matchingDocs;
}).then((matchingDocs) => {
  // Process the matching documents
  // ...
});

Swift

Hinweis: Dieses Produkt nicht ist auf WatchOS- und App Clip-Zielen verfügbar.
// Find cities within 50km of London
let center = CLLocationCoordinate2D(latitude: 51.5074, longitude: 0.1278)
let radiusInM: Double = 50 * 1000

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
let queryBounds = GFUtils.queryBounds(forLocation: center,
                                      withRadius: radiusInM)
let queries = queryBounds.map { bound -> Query in
  return db.collection("cities")
    .order(by: "geohash")
    .start(at: [bound.startValue])
    .end(at: [bound.endValue])
}

@Sendable func fetchMatchingDocs(from query: Query,
                       center: CLLocationCoordinate2D,
                       radiusInMeters: Double) async throws -> [QueryDocumentSnapshot] {
  let snapshot = try await query.getDocuments()
  // Collect all the query results together into a single list
  return snapshot.documents.filter { document in
    let lat = document.data()["lat"] as? Double ?? 0
    let lng = document.data()["lng"] as? Double ?? 0
    let coordinates = CLLocation(latitude: lat, longitude: lng)
    let centerPoint = CLLocation(latitude: center.latitude, longitude: center.longitude)

    // We have to filter out a few false positives due to GeoHash accuracy, but
    // most will match
    let distance = GFUtils.distance(from: centerPoint, to: coordinates)
    return distance <= radiusInM
  }
}

// After all callbacks have executed, matchingDocs contains the result. Note that this code
// executes all queries serially, which may not be optimal for performance.
do {
  let matchingDocs = try await withThrowingTaskGroup(of: [QueryDocumentSnapshot].self) { group -> [QueryDocumentSnapshot] in
    for query in queries {
      group.addTask {
        try await fetchMatchingDocs(from: query, center: center, radiusInMeters: radiusInM)
      }
    }
    var matchingDocs = [QueryDocumentSnapshot]()
    for try await documents in group {
      matchingDocs.append(contentsOf: documents)
    }
    return matchingDocs
  }

  print("Docs matching geoquery: \(matchingDocs)")
} catch {
  print("Unable to fetch snapshot data. \(error)")
}

Kotlin+KTX
Android

// Find cities within 50km of London
val center = GeoLocation(51.5074, 0.1278)
val radiusInM = 50.0 * 1000.0

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
val bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM)
val tasks: MutableList<Task<QuerySnapshot>> = ArrayList()
for (b in bounds) {
    val q = db.collection("cities")
        .orderBy("geohash")
        .startAt(b.startHash)
        .endAt(b.endHash)
    tasks.add(q.get())
}

// Collect all the query results together into a single list
Tasks.whenAllComplete(tasks)
    .addOnCompleteListener {
        val matchingDocs: MutableList<DocumentSnapshot> = ArrayList()
        for (task in tasks) {
            val snap = task.result
            for (doc in snap!!.documents) {
                val lat = doc.getDouble("lat")!!
                val lng = doc.getDouble("lng")!!

                // We have to filter out a few false positives due to GeoHash
                // accuracy, but most will match
                val docLocation = GeoLocation(lat, lng)
                val distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center)
                if (distanceInM <= radiusInM) {
                    matchingDocs.add(doc)
                }
            }
        }

        // matchingDocs contains the results
        // ...
    }

Java
Android

// Find cities within 50km of London
final GeoLocation center = new GeoLocation(51.5074, 0.1278);
final double radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
List<GeoQueryBounds> bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM);
final List<Task<QuerySnapshot>> tasks = new ArrayList<>();
for (GeoQueryBounds b : bounds) {
    Query q = db.collection("cities")
            .orderBy("geohash")
            .startAt(b.startHash)
            .endAt(b.endHash);

    tasks.add(q.get());
}

// Collect all the query results together into a single list
Tasks.whenAllComplete(tasks)
        .addOnCompleteListener(new OnCompleteListener<List<Task<?>>>() {
            @Override
            public void onComplete(@NonNull Task<List<Task<?>>> t) {
                List<DocumentSnapshot> matchingDocs = new ArrayList<>();

                for (Task<QuerySnapshot> task : tasks) {
                    QuerySnapshot snap = task.getResult();
                    for (DocumentSnapshot doc : snap.getDocuments()) {
                        double lat = doc.getDouble("lat");
                        double lng = doc.getDouble("lng");

                        // We have to filter out a few false positives due to GeoHash
                        // accuracy, but most will match
                        GeoLocation docLocation = new GeoLocation(lat, lng);
                        double distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center);
                        if (distanceInM <= radiusInM) {
                            matchingDocs.add(doc);
                        }
                    }
                }

                // matchingDocs contains the results
                // ...
            }
        });

Beschränkungen

Die Verwendung von Geohashes zum Abfragen von Standorten bietet neue Funktionen, hat jedoch eigene Einschränkungen:

  • Falsch positive Ergebnisse: Die Abfrage nach Geohash ist nicht genau und muss falsch positive Ergebnisse auf der Clientseite herausfiltern. Diese zusätzlichen Lesevorgänge erhöhen die Kosten und die Latenz Ihrer Anwendung.
  • Edge-Fälle: Diese Abfragemethode basiert auf der Schätzung der Entfernung zwischen Längen- und Breitengradlinien. Die Genauigkeit dieser Schätzung nimmt ab, je näher die Punkte am Nord- oder Südpol liegen. Das bedeutet, dass Geohash-Abfragen bei extremen Breitengradwerten mehr falsch-positive Ergebnisse liefern.