연구를 위해 Google Cloud 크레딧을 무료로 받으세요. 지금 신청하세요.

연구원을 위한 Google Cloud

미래의 연구 혁신을 가능하게 만듭니다. Google Cloud의 교육, 무료 크레딧, 리소스로 연구를 가속화하세요.

USC 연구원들은 Google Cloud를 사용하여 신약 개발에 박차를 가합니다.

장점 알아보기

학술 연구를 위해 무료 Google Cloud 크레딧을 최대 $5,000까지 받을 수 있도록 제안서를 제출하세요. Google의 고성능 컴퓨팅 기능을 사용하세요. 

Google Cloud Skills Boost를 통해 무료 온라인 교육에 액세스하고 플랫폼에서 학습 크레딧을 신청하여 Google Cloud를 시작해 보세요.

혁신적인 연구를 수행하고 있는 동료 커뮤니티에 연결하세요. 온라인 커뮤니티를 통해 아이디어를 공유하거나 Google Cloud 연구 혁신가가 될 수 있도록 신청하세요.


Google Cloud 알아보기

실무형 실습을 위해 Google Cloud Skills Boost의 Google Cloud 카탈로그에 액세스하세요. 최대 200크레딧까지 받을 수 있도록 신청하세요. 학생들과 크레딧을 공유하고 실험실 완료를 추적하세요.

연구 분야 개요 교육
연구, 개발, 프로토타입 제작
RAD Lab

팀이 연구 개발 단계에서 프로덕션 단계까지 신속하게 진행할 수 있도록 지원하는 Google Cloud 기반 샌드박스 환경인 RAD Lab에 대해 알아보세요. 

  • check_circle_filled_black_24dp (1)

    GitHub - Rad Lab의 코드 저장소 살펴보기 

고성능 컴퓨팅
HPC 구독

Google Cloud HPC 구독을 사용하면 연구원들은 기술 전문 지식 수준에 상관없이 고정 구독 요금으로 프로젝트를 빠르게 확장하여 초과 비용을 피할 수 있습니다. 

  • check_circle_filled_black_24dp (1)

    튜토리얼 - Slurm Resource Manager를 사용하여 Jupyter 노트북 호스트

  • check_circle_filled_black_24dp (1)

    Google Cloud Skills Boost - Slurm 자동 확장 클러스터

환경 과학
이미지 처리

대규모 컴퓨팅 성능을 사용하여 패턴을 인식하고 '이미지'를 읽는 것은 자율주행 자동차에서 얼굴 인식에 이르는 AI의 기본 기술 중 하나입니다. 

  • check_circle_filled_black_24dp (1)

    Codelab - AutoML Vision으로 기기별 이미지 분류 학습 및 배포

  • check_circle_filled_black_24dp (1)

    Google Cloud Skills Boost - AutoML Vision으로 구름 이미지 분류

TPU에서 Keras를 사용한 꽃 이미지 분류

Keras와 TensorFlow를 사용하여 처음부터 자신만의 컨볼루셔널 신경망을 빌드, 학습, 조정하는 방법을 알아보세요.

  • check_circle_filled_black_24dp (1)

    Codelab - TPU 속도 데이터 파이프라인 사용: tf.data.Dataset 및 TFRecords 

  • check_circle_filled_black_24dp (1)

    Codelab - Keras 및 TPU를 사용한 convnets, squeezenet, Xception 

생명과학
유전체학

Cloud Life Sciences(이전 명칭: Google Genomics)를 통해 생물 의학 데이터를 대규모로 처리하는 방법을 알아봅니다.

의료

Cloud Healthcare API는 Google Cloud에서 의료 데이터를 저장 및 액세스하고, 기존 치료 시스템과 Google Cloud에 호스팅된 애플리케이션 사이의 중요한 연결 다리를 제공하기 위한 관리형 솔루션을 제공합니다. 

사회과학
Cloud AI Platform

로컬과 AI Platform을 기반으로 TensorFlow 2.x 모델 학습을 연습합니다. 학습이 끝나면 서빙(예측)을 위해 모델을 AI Platform에 배포하는 방법을 배워보겠습니다.

Machine Learning API

Cloud Vision API로 이미지에서 라벨, 얼굴, 랜드마크 인식과 같은 실습을 진행하여 Machine Learning API를 직접 실습해 보세요.

물리 과학
이미지 분석 및 분류

Cloud Vision API를 통해 간단한 REST API로 강력한 머신러닝 모델을 캡슐화하여 이미지의 콘텐츠를 파악할 수 있습니다. Vision API에 이미지를 전송하고 객체, 얼굴, 랜드마크를 감지하는지 확인합니다.

수리과학
금융 서비스

Google Cloud 머신러닝 기술, 특히 딥 러닝은 시계열 분석 측면에서 매우 유용합니다. 시계열이 더 고밀도화되고 겹치기 시작함에 따라 머신러닝은 신호를 노이즈에서 분리하는 방법을 제공합니다.

  • check_circle_filled_black_24dp (1)

    튜토리얼 - HTCondor 및 Compute Engine을 사용하여 포트폴리오 위험 분석

  • check_circle_filled_black_24dp (1)

    튜토리얼 - BigQuery 및 Cloud Datalab을 사용하여 금융 시계열 분석 

데이터 과학

Google Cloud를 기반으로 빌드하면 실제로 발생하는 문제에 정교한 통계 및 머신러닝 방식을 적용할 수 있습니다.

Jupyter, R 및 RStudio

Google Cloud에서 대규모 기술 컴퓨팅을 수행합니다.

  • check_circle_filled_black_24dp (1)

    튜토리얼 - Compute Engine에서 규모에 따라 R 실행

  • check_circle_filled_black_24dp (1)

    튜토리얼 - Cloud Dataproc 클러스터에서 RStudio Server 실행

컴퓨터 공학
미디어 및 렌더링

Google Cloud를 사용하여 Linux 가상 머신(VM)에 OpenCue 렌더링 관리 시스템을 배포하는 방법을 알아봅니다.

  • check_circle_filled_black_24dp (1)

    튜토리얼 - OpenCue를 사용하여 Google Cloud에 렌더링 작업장 만들기

워크로드 관리자

클러스터 관리를 간소화하는 워크로드 관리자를 통해 사용률과 효율성을 최적화하는 방법을 알아봅니다.

  • check_circle_filled_black_24dp (1)

    GitHub - PBS 배포 스크립트

  • check_circle_filled_black_24dp (1)

    GitHub - HTCondor 배포 스크립트

컨테이너와 Kubernetes

기본 인프라를 설정하는 대신 관리형 환경을 사용하여 Kubernetes를 경험하는 데 집중하는 방법을 알아봅니다.

  • check_circle_filled_black_24dp (1)

    튜토리얼 - Cloud Build를 사용하여 Singularity 컨테이너 빌드

  • check_circle_filled_black_24dp (1)

    Google Cloud Skills Boost - Kubernetes로 클라우드 조정

맵리듀스 - Hadoop/Spark

Cloud Dataproc 클러스터를 신속하게 만들고 언제든지 크기를 조정할 수 있으므로 클러스터보다 많은 데이터 파이프라인이 생길 염려가 없습니다.

  • check_circle_filled_black_24dp (1)

    Google Cloud Skills Boost - Cloud Dataproc 소개: Hadoop 및 Spark

  • check_circle_filled_black_24dp (1)

    Codelab - Cloud Dataproc으로 관리형 Hadoop/Spark 클러스터 프로비저닝

원격 데스크톱 및 시각화

Chrome 원격 데스크톱 서비스 또는 가상 Linux 워크스테이션을 설정하는 방법을 알아봅니다.

  • check_circle_filled_black_24dp (1)

    튜토리얼 - Compute Engine에서 Chrome 원격 데스크톱 설정

  • check_circle_filled_black_24dp (1)

    튜토리얼 - 가상 GPU로 가속화된 Linux 워크스테이션 만들기

Lustre

Google Cloud Marketplace와 오픈소스 스크립트 세트를 통해 엔터프라이즈급 DDN EXAScaler Lustre 소프트웨어에 액세스하여 Compute Engine에서 Lustre 스토리지 클러스터를 쉽게 구성하고 배포하세요.

  • check_circle_filled_black_24dp (1)

    Codelab - Google Cloud에 Lustre 병렬 파일 시스템 배포

  • check_circle_filled_black_24dp (1)

    Marketplace - DDN Cloud Edition for Lustre

연구 분야

커뮤니티 가입

Google Cloud 크레딧을 받는 모든 연구원은 Google의 온라인 연구원 커뮤니티에 추가됩니다. 연구원은 연구 혁신가 프로그램에도 신청할 수 있습니다.

연구원 커뮤니티

실험실 및 강의실에서 Google Cloud를 사용 중인 다른 동료 교직원 및 연구원들과 함께하세요. Google Cloud 크레딧을 받도록 확인 및 승인된 연구원만 참여 자격이 부여됩니다. 온보딩 이메일에서 참여 링크를 확인하거나 학교에서 발급된 이메일 주소를 사용하여 액세스를 요청하세요.

연구 혁신가

Google Cloud로 과학 혁신을 이끄는 전 세계 연구원 커뮤니티에 참여하려면 신청하세요. 연구 혁신가에게는 전문 개발에 대한 액세스 권한 및 기타 장점이 제공됩니다. 지금은 아직 신청 기간이 아니지만, 프로그램에 대해 자세히 알아보고, 초기 집단을 만나보고, 신청이 시작될 때 알림을 받도록 요청할 수 있습니다.

'Google Cloud에서 Flywheel을 실행하여 시간과 비용을 절약하고 있지만, 가장 중요한 것은 이를 통해 재현 가능성을 얻을 수 있게 되었다는 것입니다. 전 세계 모든 사람들에게 도움이 될 수 있도록 저희 연구를 공유할 수 있다는 것이 바로 과학의 본질을 잘 보여줍니다.'

브라이언 완델 박사, Stanford University, CNI 교수 겸 이사
전문 읽기