연구원을 위한 Google Cloud

미래의 연구 혁신을 가능하게 만듭니다. Google Cloud의 교육, 무료 크레딧, 리소스로 연구를 가속화하세요. 

USC 연구원들은 Google Cloud를 사용하여 신약 개발 프로세스를 가속화합니다.

장점 알아보기

학술 연구에 사용할 수 있는 무료 Google Cloud 크레딧을 최대 $5,000까지 받을 수 있도록 제안서를 제출하세요. Google의 고성능 컴퓨팅 기능을 사용하세요. 

Google Cloud Skills Boost를 통해 무료 온라인 교육을 이용하고 플랫폼에서 학습 크레딧을 신청하여 Google Cloud를 시작해 보세요.

혁신적인 연구를 수행하고 있는 동료 커뮤니티에 참여하세요. 온라인 커뮤니티를 통해 아이디어를 공유하거나 Google Cloud 연구 혁신가가 될 수 있도록 신청하세요.

Google Cloud 알아보기

Google Cloud Skills Boost의 Google Cloud 카탈로그에 액세스하여 실무형 실습을 이용하세요. 최대 200크레딧까지 받을 수 있도록 신청하세요. 학생들과 크레딧을 공유하고 실험실 완료를 추적하세요.

연구 분야개요학습
연구, 개발, 프로토타입 제작
RAD Lab

팀이 연구 개발 단계에서 프로덕션 단계까지 신속하게 진행할 수 있도록 지원하는 Google Cloud 기반 샌드박스 환경인 RAD Lab에 대해 알아보세요. 

  • GitHub - RAD Lab의 코드 저장소 살펴보기

고성능 컴퓨팅
HPC 구독

Google Cloud HPC 구독을 사용하면 연구원들은 기술 전문 지식 수준에 상관없이 고정 구독 요금으로 프로젝트를 빠르게 확장하여 초과 비용을 피할 수 있습니다. 

  • 튜토리얼 - Slurm Resource Manager를 사용하여 Jupyter 노트북 호스팅

  • Codelab - Slurm을 통한 자동 확장 HPC 클러스터 배포

환경 과학
이미지 처리

대규모 컴퓨팅 성능을 사용하여 패턴을 인식하고 이미지를 '읽는 것'은 자율주행 자동차와 얼굴 인식 등에 필요한 AI의 기본 기술 중 하나입니다. 

TPU에서 Keras를 사용한 꽃 이미지 분류

Keras와 TensorFlow를 사용하여 처음부터 자신만의 컨볼루셔널 신경망을 빌드, 학습, 조정하는 방법을 알아보세요.

  • Codelab - TPU 속도의 데이터 파이프라인 사용: tf.data.Dataset 및 TFRecords 

  • Codelab - Keras 및 TPU를 사용한 최신 ConvNets, SqueezeNet, Xception 

생명과학
유전체학

Cloud Life Sciences(이전 명칭: Google Genomics)를 통해 생물 의학 데이터를 대규모로 처리하는 방법을 알아봅니다.

의료 서비스

Cloud Healthcare API는 Google Cloud에서 의료 데이터를 보관 및 액세스하고, 기존 치료 시스템과 Google Cloud에 호스팅된 애플리케이션 사이의 중요한 연결 다리를 제공하기 위한 관리형 솔루션을 제공합니다. 

사회 과학
Cloud AI Platform

로컬과 AI Platform에서 TensorFlow 2.x 모델 학습을 실습합니다. 학습이 끝나면 서빙(예측)을 위해 모델을 AI Platform에 배포하는 방법을 배워보겠습니다.

Machine Learning API

Cloud Vision API로 이미지에서 라벨, 얼굴, 랜드마크 인식과 같은 실습을 진행하여 Machine Learning API를 직접 실습합니다.

물리 과학
이미지 분석 및 분류

Cloud Vision API를 사용하면 간단한 REST API에 강력한 머신러닝 모델을 캡슐화하여 이미지 콘텐츠를 파악할 수 있습니다. Vision API에 이미지를 전송하여 객체, 얼굴, 랜드마크를 인식하는 것을 확인하세요.

수리과학
금융 서비스

Google Cloud 머신러닝 기술, 특히 딥 러닝은 시계열 분석 측면에서 매우 유용합니다. 시계열이 조밀해지고 겹치기 시작함에 따라 머신러닝은 신호를 노이즈에서 분리하는 방법을 제공합니다.

  • 튜토리얼 - HTCondor 및 Compute Engine을 사용하여 포트폴리오 위험 분석

데이터 과학

Google Cloud를 기반으로 빌드하면 실제로 발생하는 문제에 정교한 통계 및 머신러닝 방식을 적용할 수 있습니다.

Jupyter, R, RStudio

Google Cloud에서 대규모 기술 컴퓨팅 수행

  • 튜토리얼 - Google Cloud에서 R을 사용하는 데이터 과학: 탐색적 데이터 분석 튜토리얼

컴퓨터 공학
미디어 및 렌더링

Google Cloud를 사용하여 Linux 가상 머신(VM)에 OpenCue 렌더링 관리 시스템을 배포하는 방법을 알아봅니다.

  • 튜토리얼 - OpenCue를 사용하여 Google Cloud에 렌더링 작업장 만들기

워크로드 관리자

클러스터 관리를 간소화하는 워크로드 관리자를 통해 사용률과 효율성을 최적화하는 방법을 알아봅니다.

  • 동영상 - Google Cloud 워크로드 관리자

컨테이너와 Kubernetes

기본 인프라를 설정하는 대신 관리형 환경을 사용하여 Kubernetes를 경험하는 데 집중하는 방법을 알아봅니다.

맵리듀스 - Hadoop/Spark

Cloud Dataproc 클러스터를 신속하게 만들고 언제든지 크기를 조정할 수 있으므로 클러스터보다 많은 데이터 파이프라인이 생길 염려가 없습니다.

원격 데스크톱 및 시각화

Chrome 원격 데스크톱 서비스 또는 가상 Linux 워크스테이션을 설정하는 방법을 알아봅니다.

  • 튜토리얼 - Compute Engine에서 Linux용 Chrome 원격 데스크톱 설정

  • 튜토리얼 - 가상 GPU 가속 Linux 워크스테이션 만들기

Lustre

Google Cloud Marketplace 및 오픈소스 스크립트 세트를 통해 엔터프라이즈급 DDN EXAScaler Lustre 소프트웨어를 사용하여 Compute Engine에서 Lustre 스토리지 클러스터를 쉽게 구성하고 배포할 수 있습니다.

  • Codelab - Google Cloud에 Lustre 병렬 파일 시스템 배포

생성형 AI 학습

대규모 언어 모델과 Google Cloud 생성형 AI 솔루션의 기본사항을 알아봅니다.

Google Cloud 알아보기

RAD Lab

팀이 연구 개발 단계에서 프로덕션 단계까지 신속하게 진행할 수 있도록 지원하는 Google Cloud 기반 샌드박스 환경인 RAD Lab에 대해 알아보세요. 

  • GitHub - RAD Lab의 코드 저장소 살펴보기

HPC 구독

Google Cloud HPC 구독을 사용하면 연구원들은 기술 전문 지식 수준에 상관없이 고정 구독 요금으로 프로젝트를 빠르게 확장하여 초과 비용을 피할 수 있습니다. 

  • 튜토리얼 - Slurm Resource Manager를 사용하여 Jupyter 노트북 호스팅

  • Codelab - Slurm을 통한 자동 확장 HPC 클러스터 배포

이미지 처리

대규모 컴퓨팅 성능을 사용하여 패턴을 인식하고 이미지를 '읽는 것'은 자율주행 자동차와 얼굴 인식 등에 필요한 AI의 기본 기술 중 하나입니다. 

유전체학

Cloud Life Sciences(이전 명칭: Google Genomics)를 통해 생물 의학 데이터를 대규모로 처리하는 방법을 알아봅니다.

Cloud AI Platform

로컬과 AI Platform에서 TensorFlow 2.x 모델 학습을 실습합니다. 학습이 끝나면 서빙(예측)을 위해 모델을 AI Platform에 배포하는 방법을 배워보겠습니다.

이미지 분석 및 분류

Cloud Vision API를 사용하면 간단한 REST API에 강력한 머신러닝 모델을 캡슐화하여 이미지 콘텐츠를 파악할 수 있습니다. Vision API에 이미지를 전송하여 객체, 얼굴, 랜드마크를 인식하는 것을 확인하세요.

금융 서비스

Google Cloud 머신러닝 기술, 특히 딥 러닝은 시계열 분석 측면에서 매우 유용합니다. 시계열이 조밀해지고 겹치기 시작함에 따라 머신러닝은 신호를 노이즈에서 분리하는 방법을 제공합니다.

  • 튜토리얼 - HTCondor 및 Compute Engine을 사용하여 포트폴리오 위험 분석

미디어 및 렌더링

Google Cloud를 사용하여 Linux 가상 머신(VM)에 OpenCue 렌더링 관리 시스템을 배포하는 방법을 알아봅니다.

  • 튜토리얼 - OpenCue를 사용하여 Google Cloud에 렌더링 작업장 만들기

커뮤니티 가입

Google Cloud 크레딧을 받는 모든 연구원은 Google의 온라인 연구원 커뮤니티에 추가됩니다. 연구원은 연구 혁신가 프로그램에도 신청할 수 있습니다.

연구원 커뮤니티

실험실 및 강의실에서 Google Cloud를 사용 중인 다른 동료 교직원 및 연구원들과 함께하세요. Google Cloud 크레딧을 받도록 확인 및 승인된 연구원만 참여 자격이 부여됩니다. 온보딩 이메일에서 참여 링크를 확인하거나 학교에서 발급된 이메일 주소를 사용하여 액세스를 요청하세요.

연구 혁신가

Google Cloud로 과학 혁신을 이끄는 전 세계 연구원 커뮤니티에 참여하려면 신청하세요. 연구 혁신가에게는 전문 개발에 대한 액세스 권한이 주어지고 기타 혜택이 제공됩니다. 지금은 아직 신청 기간이 아니지만, 프로그램에 대해 자세히 알아보고, 기존 구성원을 만나보고, 신청이 시작될 때 알림을 받도록 요청할 수 있습니다.

Google Cloud에서 Flywheel을 실행하여 시간과 비용을 절약하고 있지만, 가장 중요한 것은 이를 통해 재현 가능성을 얻을 수 있게 되었다는 것입니다. 전 세계 모든 사람들에게 도움이 될 수 있도록 저희 연구를 공유할 수 있다는 것이 바로 과학의 본질을 잘 보여줍니다.

브라이언 완델 박사, 스탠퍼드 대학교 교수 겸 CNI 소장

사례 전문 읽어보기

다음 단계 수행

학술 연구에 사용할 수 있는 무료 Google Cloud 크레딧을 최대 $5,000까지 받을 수 있도록 제안서를 제출하세요.

Google Cloud
  • ‪English‬
  • ‪Deutsch‬
  • ‪Español‬
  • ‪Español (Latinoamérica)‬
  • ‪Français‬
  • ‪Indonesia‬
  • ‪Italiano‬
  • ‪Português (Brasil)‬
  • ‪简体中文‬
  • ‪繁體中文‬
  • ‪日本語‬
  • ‪한국어‬
콘솔
Google Cloud