Requêtes d'agrégation

Une requête d'agrégation traite les données de plusieurs entités indexées pour renvoyer une seule valeur de résumé. Firestore en mode Datastore accepte les éléments suivants : requêtes d'agrégation:

  • count()
  • sum()
  • avg()

Les requêtes d'agrégation simplifient le code de votre application et réduisent vos coûts plutôt que d'extraire chaque entité pour le traitement. Lisez cette page pour savoir comment utiliser dans les requêtes d'agrégation.

Agrégation de count()

Utiliser l'agrégation count() pour renvoyer le nombre total d'entités indexées qui correspondent à une requête donnée. Par exemple, cette agrégation count() renvoie le nombre total d'entités d'un type.

Java
import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationOnKind {
  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Task";

  // Setting up Tasks in database
  private static void setUpTasks() {
    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());
  }

  // Accessing aggregation result by the generated alias.
  private static void usageWithGeneratedAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder().over(selectAllTasks).addAggregation(count()).build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf(
        "Total tasks (accessible from default alias) is %d",
        aggregationResult.get("property_1")); // 3
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            // passing 'total_count' as alias in the aggregation query.
            .addAggregation(count().as("total_count"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("Total tasks count is %d", aggregationResult.get("total_count")); // 3
  }

  public static void invoke() {
    setUpTasks();
    usageWithGeneratedAlias();
    usageWithCustomAlias();
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))

tasks = [task1, task2]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total tasks (accessible from default alias) is {aggregation.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) AS total OVER ( SELECT * AS total FROM tasks )

GQL accepte une forme simplifiée de requêtes count():

SELECT COUNT(*) AS total FROM tasks

Cet exemple utilise un alias facultatif de total.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

L'agrégation count() prend en compte tous les filtres de la requête et tous les limit. Par exemple, l'agrégation suivante renvoie un nombre de le nombre d'entités correspondant aux filtres donnés.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class CountAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery completedTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", true))
            .build();
    EntityQuery remainingTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", false))
            .build();
    // Creating an aggregation query to get the count of all completed tasks.
    AggregationQuery completedTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(completedTasks)
            .addAggregation(count().as("total_completed_count"))
            .build();
    // Creating an aggregation query to get the count of all remaining tasks.
    AggregationQuery remainingTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(remainingTasks)
            .addAggregation(count().as("total_remaining_count"))
            .build();

    // Executing aggregation query.
    AggregationResult completedTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(completedTasksCountQuery));
    AggregationResult remainingTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(remainingTasksCountQuery));

    System.out.printf(
        "Total completed tasks count is %d",
        completedTasksCountQueryResult.get("total_completed_count")); // 2
    System.out.printf(
        "Total remaining tasks count is %d",
        remainingTasksCountQueryResult.get("total_remaining_count")); // 1
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

task1["done"] = True
task2["done"] = False
task3["done"] = True

tasks = [task1, task2, task3]
client.put_multi(tasks)
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
remaining_tasks = client.query(kind="Task").add_filter("done", "=", False)

completed_tasks_query = client.aggregation_query(query=completed_tasks).count(
    alias="total_completed_count"
)
remaining_tasks_query = client.aggregation_query(query=remaining_tasks).count(
    alias="total_remaining_count"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_count":
            print(f"Total completed tasks count is {aggregation_result.value}")

remaining_query_result = remaining_tasks_query.fetch()
for aggregation_results in remaining_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_remaining_count":
            print(f"Total remaining tasks count is {aggregation_result.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  FilterField("done", "=", true).
  NewAggregationQuery().
  WithCount("total_tasks_done")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks_done"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) OVER ( SELECT * FROM tasks WHERE is_done = false AND tag = 'house')

GQL accepte une forme simplifiée de requêtes count():

SELECT COUNT(*) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

Cet exemple montre comment compter jusqu'à une certaine valeur. Vous pouvez l'utiliser pour, par exemple, arrêter de compter à un certain nombre et informer les utilisateurs qu'ils dépasse ce nombre.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationWithLimit {
  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).setLimit(2).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            .addAggregation(count().as("at_least"))
            .build();
    // Executing aggregation query.
    AggregationResult limitQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("We have at least %d tasks", limitQueryResult.get("at_least")); // 2
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

tasks = [task1, task2, task3]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch(limit=2)
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"We have at least {aggregation.value} tasks")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  Limit(2).
  NewAggregationQuery().
  WithCount("at_least")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["at_least"]
countValue := count.(*datastorepb.Value)
fmt.Printf("We have at least %d tasks\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT_UP_TO(1000) OVER ( SELECT * FROM tasks WHERE is_done = false)

GQL accepte une forme simplifiée de requêtes count_up_to():

SELECT COUNT_UP_TO(1000) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total.

Le formulaire simplifié n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence de GQL.

Agrégation de sum()

Utilisez l'agrégation sum() pour renvoyer la somme totale des valeurs numériques correspondantes pour une requête donnée. Par exemple, le sum() suivant agrégation renvoie la somme totale des valeurs numériques de la propriété donnée à partir de entités du genre donné:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class SumAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the sum of all sales.
    AggregationQuery sumOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'total_sales_amount' as alias in the aggregation query.
            .addAggregation(sum("amount").as("total_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(sumOfSalesQuery));

    System.out.printf("Total sales is %d", aggregationResult.getLong("total_sales_amount")); // 239
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_sum_query = client.aggregation_query(all_tasks_query).sum("hours")
query_result = all_tasks_sum_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total sum of hours in tasks is {aggregation.value}")
Go
aggregationSumQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
)

GQL accepte une forme simplifiée de requêtes sum():

SELECT SUM(hours) AS total_hours FROM tasks

Cet exemple utilise un alias facultatif de total_hours.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

L'agrégation sum() prend en compte tous les filtres de la requête et tous les limit. Par exemple, l'agrégation suivante renvoie une somme de la propriété spécifiée avec une valeur numérique dans les entités correspondant à la valeur des filtres.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class SumAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the sum of all sales for customerId 1.
    AggregationQuery customer1SalesSum =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(sum("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesSumQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesSum));

    System.out.printf(
        "Customer 1 sales sum is %d", customer1SalesSumQueryResult.getLong("total_sales")); // 184
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).sum(
    property_ref="hours", alias="total_completed_sum_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_sum_hours":
            print(
                f"Total sum of hours in completed tasks is {aggregation_result.value}"
            )

Cette requête nécessite un index tel que:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationSumQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL accepte une forme simplifiée de requêtes sum():

SELECT
  SUM(hours) AS total_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total_hours.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

Agrégation de avg()

Utilisez l'agrégation avg() pour renvoyer la moyenne des valeurs numériques correspondent à une requête donnée. Par exemple, le avg() suivant l'agrégation renvoie la valeur arithmétique moyenne de la propriété spécifiée à partir des valeurs de propriété numériques des entités qui correspondent à la requête:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class AvgAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the avg of all sales.
    AggregationQuery avgOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'avg_sales_amount' as alias in the aggregation query.
            .addAggregation(avg("amount").as("avg_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(avgOfSalesQuery));

    System.out.printf(
        "Average sales is %.8f", aggregationResult.getDouble("avg_sales_amount")); // 79.66666667
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_avg_query = client.aggregation_query(all_tasks_query).avg("hours")
query_result = all_tasks_avg_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total average of hours in tasks is {aggregation.value}")
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
)

GQL accepte une forme simplifiée de requêtes avg():

SELECT AVG(hours) as avg_hours

Cet exemple utilise un alias facultatif de avg_hours.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

L'agrégation avg() prend en compte tous les filtres de la requête et tous les limit. Par exemple, l'agrégation suivante renvoie la valeur arithmétique moyenne de la propriété spécifiée à partir des valeurs de propriété numériques des entités correspondent aux filtres de requête.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class AvgAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the avg of all sales for customerId 1.
    AggregationQuery customer1SalesAvg =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(avg("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesAvgQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesAvg));

    System.out.printf(
        "Customer 1 sales avg is %d", customer1SalesAvgQueryResult.getLong("total_sales")); // 92
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).avg(
    property_ref="hours", alias="total_completed_avg_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_avg_hours":
            print(
                f"Total average of hours in completed tasks is {aggregation_result.value}"
            )

Cette requête nécessite un index tel que:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL accepte une forme simplifiée de requêtes avg():

SELECT
  AVG(hours) as avg_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de avg_hours.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

Calculer plusieurs agrégations dans une requête

Vous pouvez combiner plusieurs agrégations dans un même pipeline d'agrégation. Ce peut réduire le nombre de lectures d'index requises. Si la requête inclut des agrégations sur plusieurs champs, la requête nécessite un index composite, et chaque agrégation le calcul n'inclut que les entités qui contiennent tous les champs utilisés par chaque agrégation.

L'exemple suivant effectue plusieurs agrégations dans une seule requête d'agrégation:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;
import static com.google.cloud.datastore.aggregation.Aggregation.count;
import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class MultipleAggregationsInStructuredQuery {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery baseQuery = Query.newEntityQueryBuilder().setKind(kind).build();

    // Creating an aggregation query with COUNT, SUM and AVG aggregations.
    AggregationQuery aggregationQuery =
        Query.newAggregationQueryBuilder()
            .over(baseQuery)
            .addAggregation(count().as("total_count"))
            .addAggregation(sum("amount").as("sales_sum"))
            .addAggregation(avg("amount").as("sales_avg"))
            .build();

    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(aggregationQuery));

    System.out.printf("Total sales count: %d", aggregationResult.getLong("total_count")); // 3
    System.out.printf("Sum of sales: %d", aggregationResult.getLong("sales_sum")); // 239
    System.out.printf(
        "Avg of sales: %.8f", aggregationResult.getDouble("sales_avg")); // 79.66666667
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute query with multiple aggregations
all_tasks_query = client.query(kind="Task")
aggregation_query = client.aggregation_query(all_tasks_query)
# Add aggregations
aggregation_query.add_aggregations(
    [
        datastore.aggregation.CountAggregation(alias="count_aggregation"),
        datastore.aggregation.SumAggregation(
            property_ref="hours", alias="sum_aggregation"
        ),
        datastore.aggregation.AvgAggregation(
            property_ref="hours", alias="avg_aggregation"
        ),
    ]
)

query_result = aggregation_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"{aggregation.alias} value is {aggregation.value}")
Go
aggregationQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks").
  WithSum("hours", "total_hours").
  WithAvg("hours", "avg_hours")
Results, err := client.RunAggregationQuery(ctx, aggregationQuery)

fmt.Printf("Number of results from query: %d\n", Results["total_tasks"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Sum of results from query: %d\n", Results["total_hours"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Avg of results from query: %f\n", Results["avg_hours"].(*datastorepb.Value).GetDoubleValue())
GQL
AGGREGATE 
  SUM(hours) AS total_hours, 
  COUNT(*) AS total_tasks
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL propose une forme simplifiée pour les requêtes d'agrégation :

SELECT
  SUM(hours) AS total_hours,
  COUNT(*) AS total_tasks
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise les alias facultatifs de total_hours et total_tasks.

Le formulaire simplifié n'accepte que FROM et WHERE. . Pour en savoir plus, consultez la documentation de référence de GQL.

Les requêtes comportant plusieurs agrégations n'incluent que les entités toutes les propriétés de chaque agrégation. Cela peut entraîner des en effectuant chaque agrégation séparément.

Comportement et limites

Lorsque vous travaillez avec des requêtes d'agrégation, tenez compte des comportements et des limites suivants :

  • La requête que vous fournissez à l'agrégation doit répondre aux critères restrictions relatives aux requêtes.
  • Si une requête d'agrégation ne peut pas être résolue sous 60 secondes, une erreur DEADLINE_EXCEEDED est renvoyée. Les performances dépendent de la configuration de votre index et sur la taille de l'ensemble de données.

    Si l'opération ne peut pas être effectuée dans le délai de 60 secondes, une une solution de contournement possible consiste à utiliser des curseurs pour fusionner plusieurs agrégations.

  • Les requêtes d'agrégation lisent les entrées d'index et n'incluent que les requêtes indexées dans le calcul.

  • L'ajout d'une clause OrderBy à la requête limite l'agrégation au Entités dans lesquelles la propriété de tri existe.

  • Dans GQL, la forme simplifiée n'accepte pas ORDER BY, LIMIT ou OFFSET.

  • Dans une requête de projection, vous ne pouvez agréger des données qu'à partir des propriétés dans la projection. Par exemple, dans la requête GQL SELECT a, b FROM k WHERE c = 1, vous ne pouvez agréger des données qu'à partir de a ou b.

  • Une agrégation count() ne supprime pas les entités en double avec des propriétés de tableau. Chaque valeur du tableau correspondant à la requête ajoute une valeur au nombre.

  • Pour les agrégations sum() et avg(), les valeurs non numériques sont ignorées. sum() et l'agrégation avg() ne prennent en compte que les valeurs entières, les valeurs de nombres à virgule flottante et les codes temporels. Les codes temporels sont convertis en valeurs entières exprimées en microsecondes pour sum(), avg(), et les projections.

  • Lorsque vous combinez plusieurs agrégations dans une seule requête, notez que sum() et avg() ignore les valeurs non numériques, tandis que count() inclut des valeurs non numériques.

  • Si vous combinez des agrégations qui se trouvent sur des propriétés différentes, le calcul n'inclut que les entités qui contiennent toutes ces propriétés. Cela peut entraîner à des résultats différents en effectuant chaque agrégation séparément.

Tarifs

La tarification des requêtes d'agrégation count(), sum() et avg() dépend de : le nombre d'entrées d'index analysées au cours de l'opération. Un montant vous est facturé lecture d'entité pour un maximum de 1 000 entrées d'index mises en correspondance. Entrées d'index suivantes unités de lecture supplémentaires au coût correspondant. Un coût minimal d'une unité de lecture vous est facturé pour chaque requête. Pour les tarifs consultez la page Tarifs de Firestore en mode Datastore.

Si vous combinez plusieurs agrégations dans une seule requête, celle-ci utilise le même pour chaque agrégation et effectue une seule analyse des données. Cela peut vous aider à réduire le nombre les analyses et les lectures sont facturées par rapport à l'exécution de chaque agrégation séparément. Toutefois, les requêtes comportant plusieurs agrégations n'incluent que les entités contenant toutes ces propriétés. Cela peut entraîner des résultats différents de en effectuant chaque agrégation séparément.

Étape suivante