Tujuan
Tulis tugas Spark jumlah kata sederhana dalam Java, Scala, atau Python, lalu jalankan tugas di cluster Dataproc.
Biaya
Dalam dokumen ini, Anda menggunakan komponen Google Cloud yang dapat ditagih berikut:
- Compute Engine
- Dataproc
- Cloud Storage
Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda,
gunakan kalkulator harga.
Sebelum memulai
Jalankan langkah-langkah di bawah untuk bersiap menjalankan kode dalam tutorial ini.
Siapkan project Anda. Jika perlu, siapkan project dengan Dataproc, Compute Engine, dan Cloud Storage API yang diaktifkan serta Google Cloud CLI yang diinstal di komputer lokal Anda.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
-
Make sure that billing is enabled for your Google Cloud project.
-
Aktifkan API Dataproc, Compute Engine, and Cloud Storage.
-
Buat akun layanan:
-
Di konsol Google Cloud, buka halaman Buat akun layanan.
Buka Create service account - Pilih project Anda.
-
Di kolom Nama akun layanan, masukkan nama. Konsol Google Cloud akan mengisi kolom ID akun layanan berdasarkan nama ini.
Di kolom Deskripsi akun layanan, masukkan sebuah deskripsi. Sebagai contoh,
Service account for quickstart
. - Klik Buat dan lanjutkan.
-
Berikan peran Project > Owner ke akun layanan.
Untuk memberikan peran, temukan daftar Pilih peran, lalu pilih Project > Owner.
- Klik Lanjutkan.
-
Klik Selesai untuk menyelesaikan pembuatan akun layanan.
Jangan tutup jendela browser Anda. Anda akan menggunakannya pada langkah berikutnya.
-
-
Membuat kunci akun layanan:
- Di konsol Google Cloud, klik alamat email untuk akun layanan yang telah dibuat.
- Klik Kunci.
- Klik Tambahkan kunci, lalu klik Buat kunci baru.
- Klik Create. File kunci JSON akan didownload ke komputer Anda.
- Klik Close.
-
Tetapkan variabel lingkungan
GOOGLE_APPLICATION_CREDENTIALS
ke jalur file JSON yang berisi kredensial Anda. Variabel ini hanya berlaku untuk sesi shell Anda saat ini. Jadi, jika Anda membuka sesi baru, tetapkan variabel kembali. - Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
-
Make sure that billing is enabled for your Google Cloud project.
-
Aktifkan API Dataproc, Compute Engine, and Cloud Storage.
-
Buat akun layanan:
-
Di konsol Google Cloud, buka halaman Buat akun layanan.
Buka Create service account - Pilih project Anda.
-
Di kolom Nama akun layanan, masukkan nama. Konsol Google Cloud akan mengisi kolom ID akun layanan berdasarkan nama ini.
Di kolom Deskripsi akun layanan, masukkan sebuah deskripsi. Sebagai contoh,
Service account for quickstart
. - Klik Buat dan lanjutkan.
-
Berikan peran Project > Owner ke akun layanan.
Untuk memberikan peran, temukan daftar Pilih peran, lalu pilih Project > Owner.
- Klik Lanjutkan.
-
Klik Selesai untuk menyelesaikan pembuatan akun layanan.
Jangan tutup jendela browser Anda. Anda akan menggunakannya pada langkah berikutnya.
-
-
Membuat kunci akun layanan:
- Di konsol Google Cloud, klik alamat email untuk akun layanan yang telah dibuat.
- Klik Kunci.
- Klik Tambahkan kunci, lalu klik Buat kunci baru.
- Klik Create. File kunci JSON akan didownload ke komputer Anda.
- Klik Close.
-
Tetapkan variabel lingkungan
GOOGLE_APPLICATION_CREDENTIALS
ke jalur file JSON yang berisi kredensial Anda. Variabel ini hanya berlaku untuk sesi shell Anda saat ini. Jadi, jika Anda membuka sesi baru, tetapkan variabel kembali. - Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
Membuat bucket Cloud Storage. Anda memerlukan Cloud Storage untuk menyimpan data tutorial. Jika Anda tidak memiliki bucket yang siap digunakan, buat bucket baru di project Anda.
- Di Konsol Google Cloud, buka halaman Bucket Cloud Storage.
- Klik Buat bucket.
- Di halaman Buat bucket, masukkan informasi bucket Anda. Untuk melanjutkan ke
langkah berikutnya, klik Lanjutkan.
- Untuk Beri nama bucket, masukkan nama yang memenuhi persyaratan penamaan bucket.
-
Untuk Pilih tempat untuk menyimpan data, lakukan tindakan berikut:
- Pilih opsi Jenis lokasi.
- Pilih opsi Lokasi.
- Untuk Memilih kelas penyimpanan default untuk data Anda, pilih kelas penyimpanan.
- Untuk Memilih cara mengontrol akses ke objek, pilih opsi Kontrol akses.
- Untuk Setelan lanjutan (opsional), tentukan metode enkripsi, kebijakan retensi, atau label bucket.
- Klik Buat.
Tetapkan variabel lingkungan lokal. Tetapkan variabel lingkungan di mesin lokal Anda. Tetapkan project-id Google Cloud dan nama bucket Cloud Storage yang akan Anda gunakan untuk tutorial ini. Berikan juga nama dan region cluster Dataproc yang ada atau baru. Anda dapat membuat cluster untuk digunakan dalam tutorial ini di langkah berikutnya.
PROJECT=project-id
BUCKET_NAME=bucket-name
CLUSTER=cluster-name
REGION=cluster-region Example: "us-central1"
Buat cluster Dataproc. Jalankan perintah di bawah untuk membuat cluster Dataproc single-node di zona Compute Engine yang ditentukan.
gcloud dataproc clusters create ${CLUSTER} \ --project=${PROJECT} \ --region=${REGION} \ --single-node
Salin data publik ke bucket Cloud Storage Anda. Salin cuplikan teks Shakespeare data publik ke folder
input
di bucket Cloud Storage Anda:gcloud storage cp gs://pub/shakespeare/rose.txt \ gs://${BUCKET_NAME}/input/rose.txt
Siapkan lingkungan pengembangan Java (Apache Maven), Scala (SBT), atau Python.
Menyiapkan tugas jumlah kata Spark
Pilih tab di bawah untuk mengikuti langkah-langkah dalam menyiapkan paket atau file tugas untuk dikirim ke cluster Anda. Anda dapat menyiapkan salah satu jenis tugas berikut;
- Tugas Spark di Java menggunakan Apache Maven untuk mem-build paket JAR
- Tugas Spark di Scala menggunakan SBT untuk mem-build paket JAR
- Tugas Spark di Python (PySpark)
Java
- Salin file
pom.xml
ke komputer lokal Anda. Filepom.xml
berikut menentukan dependensi library Scala dan Spark, yang diberi cakupanprovided
untuk menunjukkan bahwa cluster Dataproc akan menyediakan library ini saat runtime. Filepom.xml
tidak menentukan dependensi Cloud Storage karena konektor menerapkan antarmuka HDFS standar. Saat tugas Spark mengakses file cluster Cloud Storage (file dengan URI yang diawali dengangs://
), sistem akan otomatis menggunakan konektor Cloud Storage untuk mengakses file di Cloud Storage<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>dataproc.codelab</groupId> <artifactId>word-count</artifactId> <version>1.0</version> <properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>Scala version, for example,
2.11.8
</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_Scala major.minor.version, for example,2.11
</artifactId> <version>Spark version, for example,2.3.1
</version> <scope>provided</scope> </dependency> </dependencies> </project> - Salin kode
WordCount.java
yang tercantum di bawah ini ke komputer lokal Anda.- Buat kumpulan direktori dengan jalur
src/main/java/dataproc/codelab
:mkdir -p src/main/java/dataproc/codelab
- Salin
WordCount.java
ke komputer lokal Anda ke dalamsrc/main/java/dataproc/codelab
:cp WordCount.java src/main/java/dataproc/codelab
WordCount.java adalah tugas Spark sederhana di Java yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.
package dataproc.codelab; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; public class WordCount { public static void main(String[] args) { if (args.length != 2) { throw new IllegalArgumentException("Exactly 2 arguments are required: <inputUri> <outputUri>"); } String inputPath = args[0]; String outputPath = args[1]; JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("Word Count")); JavaRDD<String> lines = sparkContext.textFile(inputPath); JavaRDD<String> words = lines.flatMap( (String line) -> Arrays.asList(line.split(" ")).iterator() ); JavaPairRDD<String, Integer> wordCounts = words.mapToPair( (String word) -> new Tuple2<>(word, 1) ).reduceByKey( (Integer count1, Integer count2) -> count1 + count2 ); wordCounts.saveAsTextFile(outputPath); } }
- Buat kumpulan direktori dengan jalur
- Build paket.
Jika build berhasil,mvn clean package
target/word-count-1.0.jar
akan dibuat. - Menyimpan data paket ke Cloud Storage.
gcloud storage cp target/word-count-1.0.jar \ gs://${BUCKET_NAME}/java/word-count-1.0.jar
Scala
- Salin file
build.sbt
ke komputer lokal Anda. Filebuild.sbt
berikut menentukan dependensi library Scala dan Spark, yang diberi cakupanprovided
untuk menunjukkan bahwa cluster Dataproc akan menyediakan library ini saat runtime. Filebuild.sbt
tidak menentukan dependensi Cloud Storage karena konektor menerapkan antarmuka HDFS standar. Saat tugas Spark mengakses file cluster Cloud Storage (file dengan URI yang diawali dengangs://
), sistem akan otomatis menggunakan konektor Cloud Storage untuk mengakses file di Cloud StoragescalaVersion := "Scala version, for example,
2.11.8
" name := "word-count" organization := "dataproc.codelab" version := "1.0" libraryDependencies ++= Seq( "org.scala-lang" % "scala-library" % scalaVersion.value % "provided", "org.apache.spark" %% "spark-core" % "Spark version, for example,2.3.1
" % "provided" ) - Salin
word-count.scala
ke komputer lokal Anda. Ini adalah tugas Spark sederhana di Java yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.package dataproc.codelab import org.apache.spark.SparkContext import org.apache.spark.SparkConf object WordCount { def main(args: Array[String]) { if (args.length != 2) { throw new IllegalArgumentException( "Exactly 2 arguments are required: <inputPath> <outputPath>") } val inputPath = args(0) val outputPath = args(1) val sc = new SparkContext(new SparkConf().setAppName("Word Count")) val lines = sc.textFile(inputPath) val words = lines.flatMap(line => line.split(" ")) val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _) wordCounts.saveAsTextFile(outputPath) } }
- Build paket.
Jika build berhasil,sbt clean package
target/scala-2.11/word-count_2.11-1.0.jar
akan dibuat. - Menyimpan data paket ke Cloud Storage.
gcloud storage cp target/scala-2.11/word-count_2.11-1.0.jar \ gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar
Python
- Salin
word-count.py
ke komputer lokal Anda. Ini adalah tugas Spark sederhana di Python menggunakan PySpark yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.#!/usr/bin/env python import pyspark import sys if len(sys.argv) != 3: raise Exception("Exactly 2 arguments are required: <inputUri> <outputUri>") inputUri=sys.argv[1] outputUri=sys.argv[2] sc = pyspark.SparkContext() lines = sc.textFile(sys.argv[1]) words = lines.flatMap(lambda line: line.split()) wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda count1, count2: count1 + count2) wordCounts.saveAsTextFile(sys.argv[2])
Mengirim tugas
Jalankan perintah gcloud
berikut untuk mengirimkan tugas jumlah kata ke
cluster Dataproc Anda.
Java
gcloud dataproc jobs submit spark \ --cluster=${CLUSTER} \ --class=dataproc.codelab.WordCount \ --jars=gs://${BUCKET_NAME}/java/word-count-1.0.jar \ --region=${REGION} \ -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/
Scala
gcloud dataproc jobs submit spark \ --cluster=${CLUSTER} \ --class=dataproc.codelab.WordCount \ --jars=gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar \ --region=${REGION} \ -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/
Python
gcloud dataproc jobs submit pyspark word-count.py \ --cluster=${CLUSTER} \ --region=${REGION} \ -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/
Melihat output
Setelah tugas selesai, jalankan perintah CLI gcloud berikut untuk melihat output jumlah kata.
gcloud storage cat gs://${BUCKET_NAME}/output/*
Output wordcount akan mirip dengan berikut ini:
(a,2) (call,1) (What's,1) (sweet.,1) (we,1) (as,1) (name?,1) (any,1) (other,1) (rose,1) (smell,1) (name,1) (would,1) (in,1) (which,1) (That,1) (By,1)
Pembersihan
Setelah menyelesaikan tutorial, Anda dapat membersihkan resource yang dibuat agar resource tersebut berhenti menggunakan kuota dan dikenai biaya. Bagian berikut menjelaskan cara menghapus atau menonaktifkan resource ini.
Menghapus project
Cara termudah untuk menghilangkan penagihan adalah dengan menghapus project yang Anda buat untuk tutorial.
Untuk menghapus project:
- Di konsol Google Cloud, buka halaman Manage resource.
- Pada daftar project, pilih project yang ingin Anda hapus, lalu klik Delete.
- Pada dialog, ketik project ID, lalu klik Shut down untuk menghapus project.
Menghapus cluster Dataproc
Daripada menghapus project, Anda mungkin hanya ingin menghapus cluster dalam project.
Menghapus bucket Cloud Storage
Konsol Google Cloud
- Di konsol Google Cloud, buka halaman Buckets Cloud Storage.
- Klik kotak centang untuk bucket yang ingin Anda dihapus.
- Untuk menghapus bucket, klik Hapus, lalu ikuti petunjuk.
Command line
-
Hapus bucket:
gcloud storage buckets delete BUCKET_NAME