Menstreaming topik Kafka ke Hive


Apache Kafka adalah platform streaming terdistribusi open source untuk pipeline data dan integrasi data real-time. Sistem ini menyediakan sistem streaming yang efisien dan skalabel untuk digunakan dalam berbagai aplikasi, termasuk:

  • Analisis real-time
  • Stream processing
  • Agregasi log
  • Pengiriman pesan terdistribusi
  • Streaming acara

Tujuan

  1. Instal Kafka di cluster HA Dataproc dengan ZooKeeper (disebut dalam tutorial ini sebagai "cluster Kafka Dataproc").

  2. Buat data pelanggan fiktif, lalu publikasikan data ke topik Kafka.

  3. Buat tabel Hive parquet dan ORC di Cloud Storage untuk menerima data topik Kafka yang di-streaming.

  4. Kirimkan tugas PySpark untuk berlangganan dan melakukan streaming topik Kafka ke Cloud Storage dalam format Parquet dan ORC.

  5. Jalankan kueri pada data tabel Hive yang di-streaming untuk menghitung pesan Kafka yang di-streaming.

Biaya

Dalam dokumen ini, Anda akan menggunakan komponen Google Cloudyang dapat ditagih berikut:

Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda, gunakan kalkulator harga.

Pengguna Google Cloud baru mungkin memenuhi syarat untuk mendapatkan uji coba gratis.

Setelah menyelesaikan tugas yang dijelaskan dalam dokumen ini, Anda dapat menghindari penagihan berkelanjutan dengan menghapus resource yang Anda buat. Untuk mengetahui informasi selengkapnya, lihat Pembersihan.

Sebelum memulai

Jika Anda belum melakukannya, buat project Google Cloud .

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Dataproc, Compute Engine, and Cloud Storage APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Dataproc, Compute Engine, and Cloud Storage APIs.

    Enable the APIs

  8. In the Google Cloud console, go to the Cloud Storage Buckets page.

    Go to Buckets

  9. Click Create.
  10. On the Create a bucket page, enter your bucket information. To go to the next step, click Continue.
    1. In the Get started section, do the following:
      • Enter a globally unique name that meets the bucket naming requirements.
      • To add a bucket label, expand the Labels section (), click Add label, and specify a key and a value for your label.
    2. In the Choose where to store your data section, do the following:
      1. Select a Location type.
      2. Choose a location where your bucket's data is permanently stored from the Location type drop-down menu.
      3. To set up cross-bucket replication, select Add cross-bucket replication via Storage Transfer Service and follow these steps:

        Set up cross-bucket replication

        1. In the Bucket menu, select a bucket.
        2. In the Replication settings section, click Configure to configure settings for the replication job.

          The Configure cross-bucket replication pane appears.

          • To filter objects to replicate by object name prefix, enter a prefix that you want to include or exclude objects from, then click Add a prefix.
          • To set a storage class for the replicated objects, select a storage class from the Storage class menu. If you skip this step, the replicated objects will use the destination bucket's storage class by default.
          • Click Done.
    3. In the Choose how to store your data section, do the following:
      1. Select a default storage class for the bucket or Autoclass for automatic storage class management of your bucket's data.
      2. To enable hierarchical namespace, in the Optimize storage for data-intensive workloads section, select Enable hierarchical namespace on this bucket.
    4. In the Choose how to control access to objects section, select whether or not your bucket enforces public access prevention, and select an access control method for your bucket's objects.
    5. In the Choose how to protect object data section, do the following:
      • Select any of the options under Data protection that you want to set for your bucket.
        • To enable soft delete, click the Soft delete policy (For data recovery) checkbox, and specify the number of days you want to retain objects after deletion.
        • To set Object Versioning, click the Object versioning (For version control) checkbox, and specify the maximum number of versions per object and the number of days after which the noncurrent versions expire.
        • To enable the retention policy on objects and buckets, click the Retention (For compliance) checkbox, and then do the following:
          • To enable Object Retention Lock, click the Enable object retention checkbox.
          • To enable Bucket Lock, click the Set bucket retention policy checkbox, and choose a unit of time and a length of time for your retention period.
      • To choose how your object data will be encrypted, expand the Data encryption section (), and select a Data encryption method.
  11. Click Create.
  12. Langkah-langkah tutorial

    Lakukan langkah-langkah berikut untuk membuat cluster Kafka Dataproc guna membaca topik Kafka ke Cloud Storage dalam format parquet ATAU ORC.

    Menyalin skrip penginstalan Kafka ke Cloud Storage

    Skrip kafka.sh tindakan inisialisasi ini menginstal Kafka pada cluster Dataproc.

    1. Telusuri kode.

      #!/bin/bash
      #    Copyright 2015 Google, Inc.
      #
      #    Licensed under the Apache License, Version 2.0 (the "License");
      #    you may not use this file except in compliance with the License.
      #    You may obtain a copy of the License at
      #
      #        http://www.apache.org/licenses/LICENSE-2.0
      #
      #    Unless required by applicable law or agreed to in writing, software
      #    distributed under the License is distributed on an "AS IS" BASIS,
      #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      #    See the License for the specific language governing permissions and
      #    limitations under the License.
      #
      # This script installs Apache Kafka (http://kafka.apache.org) on a Google Cloud
      # Dataproc cluster.
      
      set -euxo pipefail
      
      readonly ZOOKEEPER_HOME=/usr/lib/zookeeper
      readonly KAFKA_HOME=/usr/lib/kafka
      readonly KAFKA_PROP_FILE='/etc/kafka/conf/server.properties'
      readonly ROLE="$(/usr/share/google/get_metadata_value attributes/dataproc-role)"
      readonly RUN_ON_MASTER="$(/usr/share/google/get_metadata_value attributes/run-on-master || echo false)"
      readonly KAFKA_ENABLE_JMX="$(/usr/share/google/get_metadata_value attributes/kafka-enable-jmx || echo false)"
      readonly KAFKA_JMX_PORT="$(/usr/share/google/get_metadata_value attributes/kafka-jmx-port || echo 9999)"
      readonly INSTALL_KAFKA_PYTHON="$(/usr/share/google/get_metadata_value attributes/install-kafka-python || echo false)"
      
      # The first ZooKeeper server address, e.g., "cluster1-m-0:2181".
      ZOOKEEPER_ADDRESS=''
      # Integer broker ID of this node, e.g., 0
      BROKER_ID=''
      
      function retry_apt_command() {
        cmd="$1"
        for ((i = 0; i < 10; i++)); do
          if eval "$cmd"; then
            return 0
          fi
          sleep 5
        done
        return 1
      }
      
      function recv_keys() {
        retry_apt_command "apt-get install -y gnupg2 &&\
                           apt-key adv --keyserver keyserver.ubuntu.com --recv-keys B7B3B788A8D3785C"
      }
      
      function update_apt_get() {
        retry_apt_command "apt-get update"
      }
      
      function install_apt_get() {
        pkgs="$@"
        retry_apt_command "apt-get install -y $pkgs"
      }
      
      function err() {
        echo "[$(date +'%Y-%m-%dT%H:%M:%S%z')]: $@" >&2
        return 1
      }
      
      # Returns the list of broker IDs registered in ZooKeeper, e.g., " 0, 2, 1,".
      function get_broker_list() {
        ${KAFKA_HOME}/bin/zookeeper-shell.sh "${ZOOKEEPER_ADDRESS}" \
          <<<"ls /brokers/ids" |
          grep '\[.*\]' |
          sed 's/\[/ /' |
          sed 's/\]/,/'
      }
      
      # Waits for zookeeper to be up or time out.
      function wait_for_zookeeper() {
        for i in {1..20}; do
          if "${ZOOKEEPER_HOME}/bin/zkCli.sh" -server "${ZOOKEEPER_ADDRESS}" ls /; then
            return 0
          else
            echo "Failed to connect to ZooKeeper ${ZOOKEEPER_ADDRESS}, retry ${i}..."
            sleep 5
          fi
        done
        echo "Failed to connect to ZooKeeper ${ZOOKEEPER_ADDRESS}" >&2
        exit 1
      }
      
      # Wait until the current broker is registered or time out.
      function wait_for_kafka() {
        for i in {1..20}; do
          local broker_list=$(get_broker_list || true)
          if [[ "${broker_list}" == *" ${BROKER_ID},"* ]]; then
            return 0
          else
            echo "Kafka broker ${BROKER_ID} is not registered yet, retry ${i}..."
            sleep 5
          fi
        done
        echo "Failed to start Kafka broker ${BROKER_ID}." >&2
        exit 1
      }
      
      function install_and_configure_kafka_server() {
        # Find zookeeper list first, before attempting any installation.
        local zookeeper_client_port
        zookeeper_client_port=$(grep 'clientPort' /etc/zookeeper/conf/zoo.cfg |
          tail -n 1 |
          cut -d '=' -f 2)
      
        local zookeeper_list
        zookeeper_list=$(grep '^server\.' /etc/zookeeper/conf/zoo.cfg |
          cut -d '=' -f 2 |
          cut -d ':' -f 1 |
          sort |
          uniq |
          sed "s/$/:${zookeeper_client_port}/" |
          xargs echo |
          sed "s/ /,/g")
      
        if [[ -z "${zookeeper_list}" ]]; then
          # Didn't find zookeeper quorum in zoo.cfg, but possibly workers just didn't
          # bother to populate it. Check if YARN HA is configured.
          zookeeper_list=$(bdconfig get_property_value --configuration_file \
            /etc/hadoop/conf/yarn-site.xml \
            --name yarn.resourcemanager.zk-address 2>/dev/null)
        fi
      
        # If all attempts failed, error out.
        if [[ -z "${zookeeper_list}" ]]; then
          err 'Failed to find configured Zookeeper list; try "--num-masters=3" for HA'
        fi
      
        ZOOKEEPER_ADDRESS="${zookeeper_list%%,*}"
      
        # Install Kafka from Dataproc distro.
        install_apt_get kafka-server || dpkg -l kafka-server ||
          err 'Unable to install and find kafka-server.'
      
        mkdir -p /var/lib/kafka-logs
        chown kafka:kafka -R /var/lib/kafka-logs
      
        if [[ "${ROLE}" == "Master" ]]; then
          # For master nodes, broker ID starts from 10,000.
          if [[ "$(hostname)" == *-m ]]; then
            # non-HA
            BROKER_ID=10000
          else
            # HA
            BROKER_ID=$((10000 + $(hostname | sed 's/.*-m-\([0-9]*\)$/\1/g')))
          fi
        else
          # For worker nodes, broker ID is a random number generated less than 10000.
          # 10000 is choosen since the max broker ID allowed being set is 10000.
          BROKER_ID=$((RANDOM % 10000))
        fi
        sed -i 's|log.dirs=/tmp/kafka-logs|log.dirs=/var/lib/kafka-logs|' \
          "${KAFKA_PROP_FILE}"
        sed -i 's|^\(zookeeper\.connect=\).*|\1'${zookeeper_list}'|' \
          "${KAFKA_PROP_FILE}"
        sed -i 's,^\(broker\.id=\).*,\1'${BROKER_ID}',' \
          "${KAFKA_PROP_FILE}"
        echo -e '\nreserved.broker.max.id=100000' >>"${KAFKA_PROP_FILE}"
        echo -e '\ndelete.topic.enable=true' >>"${KAFKA_PROP_FILE}"
      
        if [[ "${KAFKA_ENABLE_JMX}" == "true" ]]; then
          sed -i '/kafka-run-class.sh/i export KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Djava.rmi.server.hostname=localhost -Djava.net.preferIPv4Stack=true"' /usr/lib/kafka/bin/kafka-server-start.sh
          sed -i "/kafka-run-class.sh/i export JMX_PORT=${KAFKA_JMX_PORT}" /usr/lib/kafka/bin/kafka-server-start.sh
        fi
      
        wait_for_zookeeper
      
        # Start Kafka.
        service kafka-server restart
      
        wait_for_kafka
      }
      
      function install_kafka_python_package() {
        KAFKA_PYTHON_PACKAGE="kafka-python==2.0.2"
        if [[ "${INSTALL_KAFKA_PYTHON}" != "true" ]]; then
          return
        fi
      
        if [[ "$(echo "${DATAPROC_IMAGE_VERSION} > 2.0" | bc)" -eq 1 ]]; then
          /opt/conda/default/bin/pip install "${KAFKA_PYTHON_PACKAGE}" || { sleep 10; /opt/conda/default/bin/pip install "${KAFKA_PYTHON_PACKAGE}"; }
        else
          OS=$(. /etc/os-release && echo "${ID}")
          if [[ "${OS}" == "rocky" ]]; then
            yum install -y python2-pip
          else
            apt-get install -y python-pip
          fi
          pip2 install "${KAFKA_PYTHON_PACKAGE}" || { sleep 10; pip2 install "${KAFKA_PYTHON_PACKAGE}"; } || { sleep 10; pip install "${KAFKA_PYTHON_PACKAGE}"; }
        fi
      }
      
      function remove_old_backports {
        # This script uses 'apt-get update' and is therefore potentially dependent on
        # backports repositories which have been archived.  In order to mitigate this
        # problem, we will remove any reference to backports repos older than oldstable
      
        # https://github.com/GoogleCloudDataproc/initialization-actions/issues/1157
        oldstable=$(curl -s https://deb.debian.org/debian/dists/oldstable/Release | awk '/^Codename/ {print $2}');
        stable=$(curl -s https://deb.debian.org/debian/dists/stable/Release | awk '/^Codename/ {print $2}');
      
        matched_files="$(grep -rsil '\-backports' /etc/apt/sources.list*)"
        if [[ -n "$matched_files" ]]; then
          for filename in "$matched_files"; do
            grep -e "$oldstable-backports" -e "$stable-backports" "$filename" || \
              sed -i -e 's/^.*-backports.*$//' "$filename"
          done
        fi
      }
      
      function main() {
        OS=$(. /etc/os-release && echo "${ID}")
        if [[ ${OS} == debian ]] && [[ $(echo "${DATAPROC_IMAGE_VERSION} <= 2.1" | bc -l) == 1 ]]; then
          remove_old_backports
        fi
        recv_keys || err 'Unable to receive keys.'
        update_apt_get || err 'Unable to update packages lists.'
        install_kafka_python_package
      
        # Only run the installation on workers; verify zookeeper on master(s).
        if [[ "${ROLE}" == 'Master' ]]; then
          service zookeeper-server status ||
            err 'Required zookeeper-server not running on master!'
          if [[ "${RUN_ON_MASTER}" == "true" ]]; then
            # Run installation on masters.
            install_and_configure_kafka_server
          else
            # On master nodes, just install kafka command-line tools and libs but not
            # kafka-server.
            install_apt_get kafka ||
              err 'Unable to install kafka libraries on master!'
          fi
        else
          # Run installation on workers.
          install_and_configure_kafka_server
        fi
      }
      
      main
      

    2. Salin skrip tindakan inisialisasi kafka.sh ke bucket Cloud Storage Anda. Skrip ini menginstal Kafka pada cluster Dataproc.

      1. Buka Cloud Shell, lalu jalankan perintah berikut:

        gcloud storage cp gs://goog-dataproc-initialization-actions-REGION/kafka/kafka.sh gs://BUCKET_NAME/scripts/
        

        Lakukan penggantian berikut:

        • REGION: kafka.sh disimpan di bucket yang diberi tag secara regional dan bersifat publik di Cloud Storage. Tentukan region Compute Engine yang secara geografis dekat, (contoh: us-central1).
        • BUCKET_NAME: Nama bucket Cloud Storage Anda.

    Membuat cluster Kafka Dataproc

    1. Buka Cloud Shell, lalu jalankan perintah gcloud dataproc clusters create berikut untuk membuat cluster HA cluster Dataproc yang menginstal komponen Kafka dan ZooKeeper:

      gcloud dataproc clusters create KAFKA_CLUSTER \
          --project=PROJECT_ID \
          --region=REGION \
          --image-version=2.1-debian11 \
          --num-masters=3 \
          --enable-component-gateway \
          --initialization-actions=gs://BUCKET_NAME/scripts/kafka.sh
      

      Catatan:

      • KAFKA_CLUSTER: Nama cluster, yang harus unik dalam project. Nama harus diawali dengan huruf kecil, dan dapat berisi hingga 51 huruf kecil, angka, dan tanda hubung. Tidak boleh diakhiri dengan tanda hubung. Nama cluster yang dihapus dapat digunakan kembali.
      • PROJECT_ID: Project yang akan dikaitkan dengan cluster ini.
      • REGION: Region Compute Engine tempat cluster akan berada, seperti us-central1.
        • Anda dapat menambahkan tanda --zone=ZONE opsional untuk menentukan zona dalam region yang ditentukan, seperti us-central1-a. Jika Anda tidak menentukan zona, fitur penempatan autozone Dataproc akan memilih zona dengan region yang ditentukan.
      • --image-version: Versi image Dataproc 2.1-debian11 direkomendasikan untuk tutorial ini. Catatan: Setiap versi image berisi serangkaian komponen yang telah diinstal sebelumnya, termasuk komponen Hive yang digunakan dalam tutorial ini (lihat Versi image Dataproc yang didukung).
      • --num-master: 3 node master membuat cluster HA. Komponen Zookeeper, yang diperlukan oleh Kafka, telah diinstal sebelumnya di cluster HA.
      • --enable-component-gateway: Mengaktifkan Gateway Komponen Dataproc.
      • BUCKET_NAME: Nama bucket Cloud Storage Anda yang berisi skrip inisialisasi /scripts/kafka.sh (lihat Menyalin skrip penginstalan Kafka ke Cloud Storage).

    Membuat topik Kafka custdata

    Untuk membuat topik Kafka di cluster Kafka Dataproc:

    1. Gunakan utilitas SSH untuk membuka jendela terminal di VM master cluster.

    2. Buat topik custdata Kafka.

      /usr/lib/kafka/bin/kafka-topics.sh \
          --bootstrap-server KAFKA_CLUSTER-w-0:9092 \
          --create --topic custdata
      

      Catatan:

      • KAFKA_CLUSTER: Masukkan nama cluster Kafka Anda. -w-0:9092 menandakan broker Kafka yang berjalan di port 9092 pada node worker-0.

      • Anda dapat menjalankan perintah berikut setelah membuat topik custdata:

        # List all topics.
        /usr/lib/kafka/bin/kafka-topics.sh \
            --bootstrap-server KAFKA_CLUSTER-w-0:9092 \
            --list
        
        # Consume then display topic data. /usr/lib/kafka/bin/kafka-console-consumer.sh \     --bootstrap-server KAFKA_CLUSTER-w-0:9092 \     --topic custdata
        # Count the number of messages in the topic. /usr/lib/kafka/bin/kafka-run-class.sh kafka.tools.GetOffsetShell \     --broker-list KAFKA_CLUSTER-w-0:9092 \     --topic custdata
        # Delete topic. /usr/lib/kafka/bin/kafka-topics.sh \     --bootstrap-server KAFKA_CLUSTER-w-0:9092 \     --delete --topic custdata

    Memublikasikan konten ke topik Kafka custdata

    Skrip berikut menggunakan alat Kafka kafka-console-producer.sh untuk membuat data pelanggan fiktif dalam format CSV.

    1. Salin, lalu tempel skrip di terminal SSH pada node master cluster Kafka Anda. Tekan <return> untuk menjalankan skrip.

      for i in {1..10000}; do \
      custname="cust name${i}"
      uuid=$(dbus-uuidgen)
      age=$((45 + $RANDOM % 45))
      amount=$(echo "$(( $RANDOM % 99999 )).$(( $RANDOM % 99 ))")
      message="${uuid}:${custname},${age},${amount}"
      echo ${message}
      done | /usr/lib/kafka/bin/kafka-console-producer.sh \
      --broker-list KAFKA_CLUSTER-w-0:9092 \
      --topic custdata \
      --property "parse.key=true" \
      --property "key.separator=:"
      

      Catatan:

      • KAFKA_CLUSTER: Nama cluster Kafka Anda.
    2. Jalankan perintah Kafka berikut untuk mengonfirmasi bahwa topik custdata berisi 10.000 pesan.

      /usr/lib/kafka/bin/kafka-run-class.sh kafka.tools.GetOffsetShell \
      --broker-list KAFKA_CLUSTER-w-0:9092 \
      --topic custdata
      

      Catatan:

      • KAFKA_CLUSTER: Nama cluster Kafka Anda.

      Output yang diharapkan:

      custdata:0:10000
      

    Membuat tabel Hive di Cloud Storage

    Buat tabel Hive untuk menerima data topik Kafka yang di-streaming. Lakukan langkah-langkah berikut untuk membuat tabel Hive cust_parquet (parquet) dan cust_orc (ORC) di bucket Cloud Storage Anda.

    1. Masukkan BUCKET_NAME Anda dalam skrip berikut, lalu salin dan tempel skrip ke terminal SSH di node master cluster Kafka Anda, lalu tekan <return> untuk membuat skrip ~/hivetables.hql (Hive Query Language).

      Anda akan menjalankan skrip ~/hivetables.hql pada langkah berikutnya untuk membuat tabel Hive Parquet dan ORC di bucket Cloud Storage Anda.

      cat > ~/hivetables.hql <<EOF
      drop table if exists cust_parquet;
      create external table if not exists cust_parquet
      (uuid string, custname string, age string, amount string)
      row format delimited fields terminated by ','
      stored as parquet
      location "gs://BUCKET_NAME/tables/cust_parquet";
      

      drop table if exists cust_orc; create external table if not exists cust_orc (uuid string, custname string, age string, amount string) row format delimited fields terminated by ',' stored as orc location "gs://BUCKET_NAME/tables/cust_orc"; EOF
    2. Di terminal SSH pada node master cluster Kafka Anda, kirimkan tugas Hive ~/hivetables.hql untuk membuat tabel Hive cust_parquet (parquet) dan cust_orc (ORC) di bucket Cloud Storage Anda.

      gcloud dataproc jobs submit hive \
          --cluster=KAFKA_CLUSTER \
          --region=REGION \
          -f ~/hivetables.hql
      

      Catatan:

      • Komponen Hive sudah diinstal sebelumnya di cluster Kafka Dataproc. Lihat versi rilis 2.1.x untuk mengetahui daftar versi komponen Hive yang disertakan dalam image 2.1 yang baru dirilis.
      • KAFKA_CLUSTER: Nama cluster Kafka Anda.
      • REGION: Region tempat cluster Kafka Anda berada.

    Streaming Kafka custdata ke tabel Hive

    1. Jalankan perintah berikut di terminal SSH pada node master cluster Kafka Anda untuk menginstal library kafka-python. Klien Kafka diperlukan untuk melakukan streaming data topik Kafka ke Cloud Storage.
      pip install kafka-python
      
    2. Masukkan BUCKET_NAME Anda, lalu salin dan tempel kode PySpark berikut ke terminal SSH di node master cluster Kafka Anda, lalu tekan <return> untuk membuat file streamdata.py.

      Skrip ini akan berlangganan topik Kafka custdata, lalu melakukan streaming data ke tabel Hive Anda di Cloud Storage. Format output, yang dapat berupa parquet atau ORC, diteruskan ke skrip sebagai parameter.

      cat > streamdata.py <<EOF
      #!/bin/python
      
      import sys
      from pyspark.sql.functions import *
      from pyspark.sql.types import *
      from pyspark.sql import SparkSession
      from kafka import KafkaConsumer
      
      def getNameFn (data): return data.split(",")[0]
      def getAgeFn  (data): return data.split(",")[1]
      def getAmtFn  (data): return data.split(",")[2]
      
      def main(cluster, outputfmt):
          spark = SparkSession.builder.appName("APP").getOrCreate()
          spark.sparkContext.setLogLevel("WARN")
          Logger = spark._jvm.org.apache.log4j.Logger
          logger = Logger.getLogger(__name__)
      
          rows = spark.readStream.format("kafka") \
          .option("kafka.bootstrap.servers", cluster+"-w-0:9092").option("subscribe", "custdata") \
          .option("startingOffsets", "earliest")\
          .load()
      
          getNameUDF = udf(getNameFn, StringType())
          getAgeUDF  = udf(getAgeFn,  StringType())
          getAmtUDF  = udf(getAmtFn,  StringType())
      
          logger.warn("Params passed in are cluster name: " + cluster + "  output format(sink): " + outputfmt)
      
          query = rows.select (col("key").cast("string").alias("uuid"),\
              getNameUDF      (col("value").cast("string")).alias("custname"),\
              getAgeUDF       (col("value").cast("string")).alias("age"),\
              getAmtUDF       (col("value").cast("string")).alias("amount"))
      
          writer = query.writeStream.format(outputfmt)\
                  .option("path","gs://BUCKET_NAME/tables/cust_"+outputfmt)\
                  .option("checkpointLocation", "gs://BUCKET_NAME/chkpt/"+outputfmt+"wr") \
              .outputMode("append")\
              .start()
      
          writer.awaitTermination()
      
      if __name__=="__main__":
          if len(sys.argv) < 2:
              print ("Invalid number of arguments passed ", len(sys.argv))
              print ("Usage: ", sys.argv[0], " cluster  format")
              print ("e.g.:  ", sys.argv[0], " <cluster_name>  orc")
              print ("e.g.:  ", sys.argv[0], " <cluster_name>  parquet")
          main(sys.argv[1], sys.argv[2])
      
      EOF
      
    3. Di terminal SSH pada node master cluster Kafka, jalankan spark-submit untuk melakukan streaming data ke tabel Hive di Cloud Storage.

      1. Masukkan nama KAFKA_CLUSTER dan output FORMAT, lalu salin dan tempel kode berikut ke terminal SSH di node master cluster Kafka Anda, lalu tekan <return> untuk menjalankan kode dan mengalirkan data custdata Kafka dalam format parquet ke tabel Hive Anda di Cloud Storage.

        spark-submit --packages \
        org.apache.spark:spark-streaming-kafka-0-10_2.12:3.1.3,org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 \
            --conf spark.history.fs.gs.outputstream.type=FLUSHABLE_COMPOSITE \
            --conf spark.driver.memory=4096m \
            --conf spark.executor.cores=2 \
            --conf spark.executor.instances=2 \
            --conf spark.executor.memory=6144m \
            streamdata.py KAFKA_CLUSTER FORMAT
            

        Catatan:

        • KAFKA_CLUSTER: Masukkan nama cluster Kafka Anda.
        • FORMAT: Tentukan parquet atau orc sebagai format output. Anda dapat menjalankan perintah secara berturut-turut untuk melakukan streaming kedua format ke tabel Hive: misalnya, pada pemanggilan pertama, tentukan parquet untuk melakukan streaming topik Kafka custdata ke tabel parquet Hive; lalu, pada pemanggilan kedua, tentukan format orc untuk melakukan streaming custdata ke tabel ORC Hive.
    4. Setelah output standar berhenti di terminal SSH, yang menandakan bahwa semua custdata telah di-streaming, tekan <control-c> di terminal SSH untuk menghentikan proses.

    5. Mencantumkan tabel Hive di Cloud Storage.

      gcloud storage ls gs://BUCKET_NAME/tables/* --recursive
      

      Catatan:

      • BUCKET_NAME: Masukkan nama bucket Cloud Storage yang berisi tabel Hive Anda (lihat Membuat tabel Hive).

    Mengkueri data yang di-streaming

    1. Di terminal SSH pada node master cluster Kafka, jalankan perintah hive berikut untuk menghitung pesan Kafka custdata yang di-streaming dalam tabel Hive di Cloud Storage.

      hive -e "select count(1) from TABLE_NAME"
      

      Catatan:

      • TABLE_NAME: Tentukan cust_parquet atau cust_orc sebagai nama tabel Hive.

      Cuplikan output yang diharapkan:

    ...
    Status: Running (Executing on YARN cluster with App id application_....)
    
    ----------------------------------------------------------------------------------------------
            VERTICES      MODE        STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED  
    ----------------------------------------------------------------------------------------------
    Map 1 .......... container     SUCCEEDED      1          1        0        0       0       0
    Reducer 2 ...... container     SUCCEEDED      1          1        0        0       0       0
    ----------------------------------------------------------------------------------------------
    VERTICES: 02/02  [==========================>>] 100%  ELAPSED TIME: 9.89 s     
    ----------------------------------------------------------------------------------------------
    OK
    10000
    Time taken: 21.394 seconds, Fetched: 1 row(s)
    

    Pembersihan

    Menghapus project

    1. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    2. In the project list, select the project that you want to delete, and then click Delete.
    3. In the dialog, type the project ID, and then click Shut down to delete the project.

    Menghapus resource

    • In the Google Cloud console, go to the Cloud Storage Buckets page.

      Go to Buckets

    • Click the checkbox for the bucket that you want to delete.
    • To delete the bucket, click Delete, and then follow the instructions.
    • Hapus cluster Kafka Anda:
      gcloud dataproc clusters delete KAFKA_CLUSTER \
          --region=${REGION}