Ejecuta un trabajo de Spark en Dataproc en Google Kubernetes Engine

Antes de comenzar

  1. Debes haber creado un clúster regional o zonal de Google Kubernetes Engine (GKE) estándar (no de Autopilot) que tenga habilitado Workload Identity.

Crea un clúster virtual de Dataproc en GKE

Se crea un clúster virtual de Dataproc en GKE como la plataforma de implementación para los componentes de Dataproc. Es un recurso virtual y, a diferencia de un clúster de Dataproc en Compute Engine, no incluye VMs principales ni de trabajo de Dataproc separadas.

  • Dataproc en GKE crea grupos de nodos dentro de un clúster de GKE cuando creas un clúster virtual de Dataproc en GKE.

  • Los trabajos de Dataproc en GKE se ejecutan como pods en estos grupos de nodos. GKE administra los grupos de nodos y la programación de pods en ellos.

  • Crea varios clústeres virtuales. Puedes crear y ejecutar varios clústeres virtuales en un clúster de GKE para mejorar la utilización de recursos compartiendo grupos de nodos entre los clústeres virtuales.

    • Cada clúster virtual:
      • se crea con propiedades independientes, incluida la versión del motor de Spark y la identidad de la carga de trabajo.
      • está aislado en un espacio de nombres de GKE independiente en el clúster de GKE.

Console

  1. En la consola de Google Cloud, ve a la página Clústeres de Dataproc.

    Ir a los clústeres

  2. Haga clic en Crear clúster.

  3. En el diálogo Crear clúster de Dataproc, haz clic en Crear en la fila Clúster en GKE.

  4. En el panel Configura el clúster, haz lo siguiente:

    1. En el campo Cluster Name, ingresa un nombre para el clúster.
    2. En la lista Región, selecciona una región para el clúster virtual de Dataproc en GKE. Esta región debe ser la misma que la del clúster de GKE existente (que seleccionarás en el siguiente elemento).
    3. En el campo Kubernetes Cluster, haz clic en Explorar para seleccionar la región en la que se encuentra tu clúster de GKE existente.
    4. Opcional: En el campo Bucket de Cloud Storage para la etapa de pruebas, puedes hacer clic en Explorar para seleccionar un bucket de Cloud Storage existente. Dataproc en GKE enviará artefactos a la etapa del bucket. Ignora este campo para que Dataproc en GKE cree un bucket de pruebas.
  5. En el panel izquierdo, haz clic en Configurar grupos de nodos y, luego, en el panel Grupos de nodos, haz clic en Agregar un grupo.

    1. Para volver a usar un grupo de nodos de Dataproc en GKE existente, haz lo siguiente:
      1. Haz clic en Reutilizar un grupo de nodos existente.
      2. Ingresa el nombre del grupo de nodos existente y selecciona su rol. Al menos un grupo de nodos debe tener el rol DEFAULT.
      3. Haz clic en Listo.
    2. Para crear un nuevo grupo de nodos de Dataproc en GKE, haz lo siguiente:
      1. Haz clic en Crear un grupo de nodos nuevo.
      2. Ingresa los siguientes valores del grupo de nodos:
        • Nombre del grupo de nodos
        • Rol: Al menos un grupo de nodos debe tener el rol DEFAULT.
        • Ubicación: Especifica una zona dentro de la región del clúster de Dataproc en GKE.
        • Tipo de máquina del grupo de nodos
        • Plataforma de CPU
        • Interrupibilidad
        • Min: Es la cantidad mínima de nodos.
        • Max: Cantidad máxima de nodos. La cantidad máxima de nodos debe ser superior a 0.
    3. Haz clic en Agregar un grupo para agregar más grupos de nodos. Todos los grupos de nodos deben tener la ubicación. Puedes agregar un total de cuatro grupos de nodos.
  6. Opcional: Si configuraste un servidor de historial persistente (PHS) de Dataproc para usarlo y ver el historial de trabajos de Spark, en los clústeres de Dataproc activos y borrados en GKE, haz clic en Personalizar clúster. Luego, en el campo Clúster del servidor de historial, busca y elige tu clúster de PHS. El clúster de PHS debe estar ubicado en la misma región que el clúster virtual de Dataproc en GKE.

  7. Haz clic en Crear para crear el clúster de Dataproc. Tu clúster de Dataproc en GKE aparecerá en una lista en la página Clústeres. Su estado es Provisioning hasta que el clúster esté listo para usarse y, luego, cambia a Running.

gcloud

Configura las variables de entorno y, luego, ejecuta el comando gcloud dataproc clusters gke create de forma local o en Cloud Shell para crear un clúster de Dataproc en GKE.

  1. Establece las variables de entorno:

    DP_CLUSTER=Dataproc on GKE  cluster-name \
      REGION=region \
      GKE_CLUSTER=GKE cluster-name \
      BUCKET=Cloud Storage bucket-name \
      DP_POOLNAME=node pool-name
      PHS_CLUSTER=Dataproc PHS server name
    
    Notas:

    • DP_CLUSTER: Establece el nombre del clúster virtual de Dataproc, que debe comenzar con una letra minúscula seguida de hasta 54 letras minúsculas, números o guiones. No puede terminar con un guion.
    • REGION: region debe ser la misma que la región en la que se encuentra el clúster de GKE.
    • GKE_CLUSTER: Es el nombre del clúster de GKE existente.
    • BUCKET: (Opcional) Puedes especificar el nombre de un bucket de Cloud Storage, que Dataproc usará para crear una etapa intermedia de artefactos. Si no especificas un bucket, Dataproc en GKE creará un bucket de etapa de pruebas.
    • DP_POOLNAME: Es el nombre de un grupo de nodos que se creará en el clúster de GKE.
    • PHS_CLUSTER: Servidor de PHS de Dataproc (opcional) para ver el historial de trabajos de Spark en clústeres de Dataproc activos y borrados en GKE. El clúster de PHS debe estar ubicado en la misma región que el clúster virtual de Dataproc en GKE.
  2. Ejecuta el siguiente comando:

    gcloud dataproc clusters gke create ${DP_CLUSTER} \
        --region=${REGION} \
        --gke-cluster=${GKE_CLUSTER} \
        --spark-engine-version=latest \
        --staging-bucket=${BUCKET} \
        --pools="name=${DP_POOLNAME},roles=default" \
        --setup-workload-identity \
        --history-server-cluster=${PHS_CLUSTER}
    
    Notas:

    • --spark-engine-version: Es la versión de la imagen de Spark que se usa en el clúster de Dataproc. Puedes usar un identificador, como 3, 3.1 o latest, o bien especificar la versión submenor completa, como 3.1-dataproc-5.
    • --staging-bucket: Borra esta marca para que Dataproc en GKE cree un bucket de pruebas.
    • --pools: Esta marca se usa para especificar un grupo de nodos nuevo o existente que Dataproc creará o usará para realizar la carga de trabajo. Enumera la configuración del grupo de nodos de Dataproc en GKE, separada por comas, por ejemplo:
      --pools=name=dp-default,roles=default,machineType=e2-standard-4,min=0,max=10
      
      Debes especificar el grupo de nodos name y role. Otros parámetros de configuración del grupo de nodos son opcionales. Puedes usar varias marcas --pools para especificar varios grupos de nodos. Al menos un grupo de nodos debe tener el rol default. Todos los grupos de nodos deben tener la misma ubicación.
    • --setup-workload-identity: Esta marca habilita las vinculaciones de Workload Identity. Estas vinculaciones permiten que las cuentas de servicio de Kubernetes (KSA) actúen como la cuenta de servicio de VM de Dataproc (identidad del plano de datos) predeterminada del clúster virtual.

REST

Completa un virtualClusterConfig como parte de una solicitud cluster.create a la API de Dataproc.

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • PROJECT: ID del proyecto de Google Cloud
  • REGION: Región del clúster virtual de Dataproc (la misma región que la región del clúster de GKE existente)
  • DP_CLUSTER: Nombre del clúster de Dataproc
  • GKE_CLUSTER: Es el nombre del clúster de GKE.
  • NODE_POOL: Nombre del grupo de nodos
  • PHS_CLUSTER: Nombre del clúster del servidor de historial persistente (PHS)
  • BUCKET: Es el nombre del bucket de etapa (opcional). Deja este campo vacío para que Dataproc en GKE cree un bucket de preparación.

Método HTTP y URL:

POST https://dataproc.googleapis.com/v1/projects/project-id/regions/region/clusters

Cuerpo JSON de la solicitud:

{
  "clusterName":"DP_CLUSTER",
  "projectId":"PROJECT",
  "virtualClusterConfig":{
    "auxiliaryServicesConfig":{
      "sparkHistoryServerConfig":{
        "dataprocCluster":"projects/PROJECT/regions/REGION/clusters/PHS_CLUSTER"
      }
    },
    "kubernetesClusterConfig":{
      "gkeClusterConfig":{
        "gkeClusterTarget":"projects/PROJECT/locations/REGION/clusters/GKE_CLUSTER",
        "nodePoolTarget":[
          {
"nodePool":"projects/PROJECT/locations/REGION/clusters/GKE_CLUSTER/nodePools/NODE_POOL",
            "roles":[
              "DEFAULT"
            ]
          }
        ]
      },
      "kubernetesSoftwareConfig":{
        "componentVersion":{
          "SPARK":"latest"
        }
      }
    },
    "stagingBucket":"BUCKET"
  }
}

Para enviar tu solicitud, expande una de estas opciones:

Deberías recibir una respuesta JSON similar a la que se muestra a continuación:

{
  "projectId":"PROJECT",
  "clusterName":"DP_CLUSTER",
  "status":{
    "state":"RUNNING",
    "stateStartTime":"2022-04-01T19:16:39.865716Z"
  },
  "clusterUuid":"98060b77-...",
  "statusHistory":[
    {
      "state":"CREATING",
      "stateStartTime":"2022-04-01T19:14:27.340544Z"
    }
  ],
  "labels":{
    "goog-dataproc-cluster-name":"DP_CLUSTER",
    "goog-dataproc-cluster-uuid":"98060b77-...",
    "goog-dataproc-location":"REGION",
    "goog-dataproc-environment":"prod"
  },
  "virtualClusterConfig":{
    "stagingBucket":"BUCKET",
    "kubernetesClusterConfig":{
      "kubernetesNamespace":"dp-cluster",
      "gkeClusterConfig":{
"gkeClusterTarget":"projects/PROJECT/locations/REGION/clusters/GKE_CLUSTER",
        "nodePoolTarget":[
          {
"nodePool":"projects/PROJECT/locations/REGION/clusters/GKE_CLUSTER/nodePools/NODE_POOL",
            "roles":[
              "DEFAULT"
            ]
          }
        ]
      },
      "kubernetesSoftwareConfig":{
        "componentVersion":{
          "SPARK":"3.1-..."
        },
        "properties":{
          "dpgke:dpgke.unstable.outputOnly.endpoints.sparkHistoryServer":"https://...",
          "spark:spark.eventLog.dir":"gs://BUCKET/.../spark-job-history",
          "spark:spark.eventLog.enabled":"true"
        }
      }
    },
    "auxiliaryServicesConfig":{
      "sparkHistoryServerConfig":{
        "dataprocCluster":"projects/PROJECT/regions/REGION/clusters/PHS_CLUSTER"
      }
    }
  }

Enviar un trabajo de Spark

Después de que se ejecute tu clúster virtual de Dataproc en GKE, envía un trabajo de Spark con la consola de Google Cloud, gcloud CLI o la API de Dataproc jobs.submit (con solicitudes HTTP directas o las bibliotecas cliente de Cloud).

Ejemplo de trabajo de Spark de la CLI de gcloud:

gcloud dataproc jobs submit spark \
    --region=${REGION} \
    --cluster=${DP_CLUSTER} \
    --class=org.apache.spark.examples.SparkPi \
    --jars=local:///usr/lib/spark/examples/jars/spark-examples.jar \
    -- 1000

Ejemplo de trabajo de PySpark de la CLI de gcloud:

gcloud dataproc jobs submit pyspark \
    --region=${REGION} \
    --cluster=${DP_CLUSTER} \
    local:///usr/lib/spark/examples/src/main/python/pi.py \
    -- 10

Ejemplo de trabajo de SparkR de la CLI de gcloud:

gcloud dataproc jobs submit spark-r \
    --region=${REGION} \
    --cluster=${DP_CLUSTER} \
    local:///usr/lib/spark/examples/src/main/r/dataframe.R

Limpia