클러스터에 GPU 연결

Dataproc은 그래픽 처리 장치(GPU)를 Dataproc 클러스터의 마스터 및 작업자 Compute Engine 노드에 연결할 수 있는 기능을 제공합니다. 이러한 GPU를 사용하여 인스턴스에서 머신러닝, 데이터 처리와 같은 특정 워크로드를 가속화할 수 있습니다.

GPU로 수행할 수 있는 작업과 이용 가능한 GPU 하드웨어의 유형에 대한 자세한 내용은 Compute Engine의 GPU를 참조하세요.

시작하기 전에

  • GPU에는 특수 드라이버와 소프트웨어가 필요합니다. 이러한 항목은 Dataproc 클러스터에 사전 설치되어 있지 않습니다.
  • 인스턴스에서 GPU를 사용하는 데 드는 비용을 알아보려면 Compute Engine의 GPU 가격을 참조하세요.
  • 이러한 인스턴스가 GPU를 사용하지 않은 인스턴스와 어떻게 다르게 작동하는지 알아보려면 GPU를 사용하는 인스턴스의 제한사항을 참조하세요.
  • 프로젝트에서 사용할 수 있는 GPU 할당량(NVIDIA_T4_GPUS, NVIDIA_P100_GPUS, NVIDIA_V100_GPUS)이 충분한지 확인하려면 프로젝트의 할당량 페이지를 참조하세요. GPU가 할당량 페이지에 나와 있지 않거나 추가 GPU 할당량이 필요한 경우 할당량 상향 조정을 요청하세요.

GPU 유형

Dataproc 노드는 다음과 같은 GPU 유형을 지원합니다. GPU를 Dataproc 클러스터에 연결할 때 GPU 유형을 지정해야 합니다.

  • nvidia-tesla-l4 - NVIDIA® Tesla® L4
  • nvidia-tesla-a100 - NVIDIA® Tesla® A100
  • nvidia-tesla-p100 - NVIDIA® Tesla® P100
  • nvidia-tesla-v100 - NVIDIA® Tesla® V100
  • nvidia-tesla-p4 - NVIDIA® Tesla® P4
  • nvidia-tesla-t4 - NVIDIA® Tesla® T4
  • nvidia-tesla-p100-vws - NVIDIA® Tesla® P100 가상 워크스테이션
  • nvidia-tesla-p4-vws - NVIDIA® Tesla® P4 가상 워크스테이션
  • nvidia-tesla-t4-vws - NVIDIA® Tesla® T4 가상 워크스테이션

클러스터에 GPU 연결

gcloud

‑‑master-accelerator, ‑‑worker-accelerator, ‑‑secondary-worker-accelerator 플래그를 사용하여 클러스터를 만들 때 Dataproc 클러스터의 마스터 노드와 기본 및 보조 워커 노드에 GPU를 연결합니다. 이러한 플래그는 다음 두 값을 사용합니다.

  1. 노드에 연결할 GPU 유형
  2. 노드에 연결할 GPU 수

GPU 유형은 필수 항목이고 GPU 수는 선택사항입니다(기본값은 GPU 1개임).

예:

gcloud dataproc clusters create cluster-name \
    --region=region \
    --master-accelerator type=nvidia-tesla-t4 \
    --worker-accelerator type=nvidia-tesla-t4,count=4 \
    --secondary-worker-accelerator type=nvidia-tesla-t4,count=4 \
    ... other flags

클러스터에서 GPU를 사용하려면 GPU 드라이버를 설치해야 합니다.

REST API

InstanceGroupConfig.AcceleratorConfig acceleratorTypeUriacceleratorCount 필드를 cluster.create API 요청의 일부로 입력하여 Dataproc 클러스터의 마스터 노드와 기본 및 보조 워커 노드에 GPU를 연결합니다.

콘솔

Google Cloud 콘솔에서 클러스터 만들기 페이지에 있는 노드 구성 패널의 마스터 및 워커 노드 섹션에서 CPU 플랫폼 및 GPU→GPU→GPU 추가를 클릭하여 노드의 GPU 수와 GPU 유형을 지정합니다.

GPU 드라이버 설치

Dataproc 노드에 연결된 GPU를 활용하려면 GPU 드라이버가 필요합니다. 아래에 나열된 초기화 작업 안내에 따라 GPU 드라이버를 설치할 수 있습니다.

#!/bin/bash
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script installs NVIDIA GPU drivers and collects GPU utilization metrics.

set -euxo pipefail

function os_id()       { grep '^ID=' /etc/os-release | cut -d= -f2 | xargs ; }
function os_version()  { grep '^VERSION_ID=' /etc/os-release | cut -d= -f2 | xargs ; }
function os_codename() { grep '^VERSION_CODENAME=' /etc/os-release | cut -d= -f2 | xargs ; }
function is_rocky()    { [[ "$(os_id)" == 'rocky' ]] ; }
function is_rocky8()   { is_rocky && [[ "$(os_version)" == '8'* ]] ; }
function is_rocky9()   { is_rocky && [[ "$(os_version)" == '9'* ]] ; }
function is_ubuntu()   { [[ "$(os_id)" == 'ubuntu' ]] ; }
function is_ubuntu18() { is_ubuntu && [[ "$(os_version)" == '18.04'* ]] ; }
function is_ubuntu20() { is_ubuntu && [[ "$(os_version)" == '20.04'* ]] ; }
function is_ubuntu22() { is_ubuntu && [[ "$(os_version)" == '22.04'* ]] ; }
function is_debian()   { [[ "$(os_id)" == 'debian' ]] ; }
function is_debian10() { is_debian && [[ "$(os_version)" == '10'* ]] ; }
function is_debian11() { is_debian && [[ "$(os_version)" == '11'* ]] ; }
function is_debian12() { is_debian && [[ "$(os_version)" == '12'* ]] ; }
function os_vercat() { if   is_ubuntu ; then os_version | sed -e 's/[^0-9]//g'
                       elif is_rocky  ; then os_version | sed -e 's/[^0-9].*$//g'
                                        else os_version ; fi ; }

function remove_old_backports {
  if is_debian12 ; then return ; fi
  # This script uses 'apt-get update' and is therefore potentially dependent on
  # backports repositories which have been archived.  In order to mitigate this
  # problem, we will use archive.debian.org for the oldoldstable repo

  # https://github.com/GoogleCloudDataproc/initialization-actions/issues/1157
  debdists="https://deb.debian.org/debian/dists"
  oldoldstable=$(curl -s "${debdists}/oldoldstable/Release" | awk '/^Codename/ {print $2}');
  oldstable=$(   curl -s "${debdists}/oldstable/Release"    | awk '/^Codename/ {print $2}');
  stable=$(      curl -s "${debdists}/stable/Release"       | awk '/^Codename/ {print $2}');

  matched_files=( $(test -d /etc/apt && grep -rsil '\-backports' /etc/apt/sources.list*||:) )

  for filename in "${matched_files[@]}"; do
    # Fetch from archive.debian.org for ${oldoldstable}-backports
    perl -pi -e "s{^(deb[^\s]*) https?://[^/]+/debian ${oldoldstable}-backports }
                  {\$1 https://archive.debian.org/debian ${oldoldstable}-backports }g" "${filename}"
  done
}

function compare_versions_lte {
  [ "$1" = "$(echo -e "$1\n$2" | sort -V | head -n1)" ]
}

function compare_versions_lt() {
  [ "$1" = "$2" ] && return 1 || compare_versions_lte $1 $2
}

function get_metadata_attribute() {
  local -r attribute_name=$1
  local -r default_value="${2:-}"
  /usr/share/google/get_metadata_value "attributes/${attribute_name}" || echo -n "${default_value}"
}

OS_NAME=$(lsb_release -is | tr '[:upper:]' '[:lower:]')
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
readonly OS_NAME

# node role
ROLE="$(get_metadata_attribute dataproc-role)"
readonly ROLE

# CUDA version and Driver version
# https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
readonly -A DRIVER_FOR_CUDA=(
          [11.8]="525.147.05" [12.1]="530.30.02"  [12.4]="550.54.14"
          [12.5]="555.42.06"
)
readonly -A CUDNN_FOR_CUDA=(
          [11.8]="8.6.0.163"  [12.1]="8.9.0"      [12.4]="9.1.0.70"
          [12.5]="9.2.1.18"
)
readonly -A NCCL_FOR_CUDA=(
          [11.8]="2.15.5"     [12.1]="2.17.1"     [12.4]="2.21.5"
          [12.5]="2.22.3"
)
readonly -A CUDA_SUBVER=(
          [11.8]="11.8.0"     [12.1]="12.1.0"     [12.4]="12.4.1"
          [12.5]="12.5.1"
)

RUNTIME=$(get_metadata_attribute 'rapids-runtime' 'SPARK')
DEFAULT_CUDA_VERSION='12.4'
if [[ "${RUNTIME}" != "SPARK" ]]; then
  DEFAULT_CUDA_VERSION='11.8'
fi
readonly DEFAULT_CUDA_VERSION
readonly CUDA_VERSION=$(get_metadata_attribute 'cuda-version' "${DEFAULT_CUDA_VERSION}")
readonly CUDA_FULL_VERSION="${CUDA_SUBVER["${CUDA_VERSION}"]}"

function is_cuda12() { [[ "${CUDA_VERSION%%.*}" == "12" ]] ; }
function is_cuda11() { [[ "${CUDA_VERSION%%.*}" == "11" ]] ; }
readonly DEFAULT_DRIVER=${DRIVER_FOR_CUDA["${CUDA_VERSION}"]}
DRIVER_VERSION=$(get_metadata_attribute 'gpu-driver-version' "${DEFAULT_DRIVER}")
if (is_ubuntu20 || is_ubuntu22) && is_cuda11 ; then DRIVER_VERSION="535.183.06" ; fi
readonly DRIVER_VERSION
readonly DRIVER=${DRIVER_VERSION%%.*}

# Parameters for NVIDIA-provided CUDNN library
readonly DEFAULT_CUDNN_VERSION=${CUDNN_FOR_CUDA["${CUDA_VERSION}"]}
CUDNN_VERSION=$(get_metadata_attribute 'cudnn-version' "${DEFAULT_CUDNN_VERSION}")
function is_cudnn8() { [[ "${CUDNN_VERSION%%.*}" == "8" ]] ; }
function is_cudnn9() { [[ "${CUDNN_VERSION%%.*}" == "9" ]] ; }
if is_rocky \
   && (compare_versions_lte "${CUDNN_VERSION}" "8.0.5.39") ; then
  CUDNN_VERSION="8.0.5.39"
elif (is_ubuntu20 || is_ubuntu22 || is_debian12) && is_cudnn8 ; then
  # cuDNN v8 is not distribution for ubuntu20+, debian12
  CUDNN_VERSION="9.1.0.70"

elif (is_ubuntu18 || is_debian10 || is_debian11) && is_cudnn9 ; then
  # cuDNN v9 is not distributed for ubuntu18, debian10, debian11 ; fall back to 8
  CUDNN_VERSION="8.8.0.121"
fi
readonly CUDNN_VERSION

readonly DEFAULT_NCCL_VERSION=${NCCL_FOR_CUDA["${CUDA_VERSION}"]}
readonly NCCL_VERSION=$(get_metadata_attribute 'nccl-version' ${DEFAULT_NCCL_VERSION})

# Parameters for NVIDIA-provided Debian GPU driver
readonly DEFAULT_USERSPACE_URL="https://download.nvidia.com/XFree86/Linux-x86_64/${DRIVER_VERSION}/NVIDIA-Linux-x86_64-${DRIVER_VERSION}.run"

readonly USERSPACE_URL=$(get_metadata_attribute 'gpu-driver-url' "${DEFAULT_USERSPACE_URL}")

readonly NVIDIA_BASE_DL_URL='https://developer.download.nvidia.com/compute'

# Short name for urls
if is_ubuntu22  ; then
    # at the time of writing 20240721 there is no ubuntu2204 in the index of repos at
    # https://developer.download.nvidia.com/compute/machine-learning/repos/
    # use packages from previous release until such time as nvidia
    # release ubuntu2204 builds

    nccl_shortname="ubuntu2004"
    shortname="$(os_id)$(os_vercat)"
elif is_rocky9 ; then
    # use packages from previous release until such time as nvidia
    # release rhel9 builds

    nccl_shortname="rhel8"
    shortname="rhel9"
elif is_rocky ; then
    shortname="$(os_id | sed -e 's/rocky/rhel/')$(os_vercat)"
    nccl_shortname="${shortname}"
else
    shortname="$(os_id)$(os_vercat)"
    nccl_shortname="${shortname}"
fi

# Parameters for NVIDIA-provided package repositories
readonly NVIDIA_REPO_URL="${NVIDIA_BASE_DL_URL}/cuda/repos/${shortname}/x86_64"

# Parameters for NVIDIA-provided NCCL library
readonly DEFAULT_NCCL_REPO_URL="${NVIDIA_BASE_DL_URL}/machine-learning/repos/${nccl_shortname}/x86_64/nvidia-machine-learning-repo-${nccl_shortname}_1.0.0-1_amd64.deb"
NCCL_REPO_URL=$(get_metadata_attribute 'nccl-repo-url' "${DEFAULT_NCCL_REPO_URL}")
readonly NCCL_REPO_URL
readonly NCCL_REPO_KEY="${NVIDIA_BASE_DL_URL}/machine-learning/repos/${nccl_shortname}/x86_64/7fa2af80.pub" # 3bf863cc.pub

readonly -A DEFAULT_NVIDIA_CUDA_URLS=(
  [11.8]="${NVIDIA_BASE_DL_URL}/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
  [12.1]="${NVIDIA_BASE_DL_URL}/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
  [12.4]="${NVIDIA_BASE_DL_URL}/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
)
readonly DEFAULT_NVIDIA_CUDA_URL=${DEFAULT_NVIDIA_CUDA_URLS["${CUDA_VERSION}"]}
NVIDIA_CUDA_URL=$(get_metadata_attribute 'cuda-url' "${DEFAULT_NVIDIA_CUDA_URL}")
readonly NVIDIA_CUDA_URL


# Parameter for NVIDIA-provided Rocky Linux GPU driver
readonly NVIDIA_ROCKY_REPO_URL="${NVIDIA_REPO_URL}/cuda-${shortname}.repo"

CUDNN_TARBALL="cudnn-${CUDA_VERSION}-linux-x64-v${CUDNN_VERSION}.tgz"
CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN_VERSION%.*}/${CUDNN_TARBALL}"
if ( compare_versions_lte "8.3.1.22" "${CUDNN_VERSION}" ); then
  CUDNN_TARBALL="cudnn-linux-x86_64-${CUDNN_VERSION}_cuda${CUDA_VERSION%.*}-archive.tar.xz"
  if ( compare_versions_lte "${CUDNN_VERSION}" "8.4.1.50" ); then
    CUDNN_TARBALL="cudnn-linux-x86_64-${CUDNN_VERSION}_cuda${CUDA_VERSION}-archive.tar.xz"
  fi
  CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN_VERSION%.*}/local_installers/${CUDA_VERSION}/${CUDNN_TARBALL}"
fi
if ( compare_versions_lte "12.0" "${CUDA_VERSION}" ); then
  # When cuda version is greater than 12.0
  CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.2.0.82_cuda12-archive.tar.xz"
fi
readonly CUDNN_TARBALL
readonly CUDNN_TARBALL_URL

# Whether to install NVIDIA-provided or OS-provided GPU driver
GPU_DRIVER_PROVIDER=$(get_metadata_attribute 'gpu-driver-provider' 'NVIDIA')
readonly GPU_DRIVER_PROVIDER

# Stackdriver GPU agent parameters
readonly GPU_AGENT_REPO_URL='https://raw.githubusercontent.com/GoogleCloudPlatform/ml-on-gcp/master/dlvm/gcp-gpu-utilization-metrics'
# Whether to install GPU monitoring agent that sends GPU metrics to Stackdriver
INSTALL_GPU_AGENT=$(get_metadata_attribute 'install-gpu-agent' 'false')
readonly INSTALL_GPU_AGENT

# Dataproc configurations
readonly HADOOP_CONF_DIR='/etc/hadoop/conf'
readonly HIVE_CONF_DIR='/etc/hive/conf'
readonly SPARK_CONF_DIR='/etc/spark/conf'

NVIDIA_SMI_PATH='/usr/bin'
MIG_MAJOR_CAPS=0
IS_MIG_ENABLED=0

function execute_with_retries() {
  local -r cmd="$*"
  for ((i = 0; i < 3; i++)); do
    if eval "$cmd"; then return 0 ; fi
    sleep 5
  done
  return 1
}

CUDA_KEYRING_PKG_INSTALLED="0"
function install_cuda_keyring_pkg() {
  if [[ "${CUDA_KEYRING_PKG_INSTALLED}" == "1" ]]; then return ; fi
  local kr_ver=1.1
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${NVIDIA_REPO_URL}/cuda-keyring_${kr_ver}-1_all.deb" \
    -o /tmp/cuda-keyring.deb
  dpkg -i "/tmp/cuda-keyring.deb"
  rm -f "/tmp/cuda-keyring.deb"
  CUDA_KEYRING_PKG_INSTALLED="1"
}

function uninstall_cuda_keyring_pkg() {
  apt-get purge -yq cuda-keyring
  CUDA_KEYRING_PKG_INSTALLED="0"
}

CUDA_LOCAL_REPO_INSTALLED="0"
function install_local_cuda_repo() {
  if [[ "${CUDA_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  CUDA_LOCAL_REPO_INSTALLED="1"
  pkgname="cuda-repo-${shortname}-${CUDA_VERSION//./-}-local"
  CUDA_LOCAL_REPO_PKG_NAME="${pkgname}"
  readonly LOCAL_INSTALLER_DEB="${pkgname}_${CUDA_FULL_VERSION}-${DRIVER_VERSION}-1_amd64.deb"
  readonly LOCAL_DEB_URL="${NVIDIA_BASE_DL_URL}/cuda/${CUDA_FULL_VERSION}/local_installers/${LOCAL_INSTALLER_DEB}"
  readonly DIST_KEYRING_DIR="/var/${pkgname}"

  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
    "${LOCAL_DEB_URL}" -o "/tmp/${LOCAL_INSTALLER_DEB}"

  dpkg -i "/tmp/${LOCAL_INSTALLER_DEB}"
  rm "/tmp/${LOCAL_INSTALLER_DEB}"
  cp ${DIST_KEYRING_DIR}/cuda-*-keyring.gpg /usr/share/keyrings/

  if is_ubuntu ; then
    curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
      "${NVIDIA_REPO_URL}/cuda-${shortname}.pin" \
      -o /etc/apt/preferences.d/cuda-repository-pin-600
  fi
}
function uninstall_local_cuda_repo(){
  apt-get purge -yq "${CUDA_LOCAL_REPO_PKG_NAME}"
  CUDA_LOCAL_REPO_INSTALLED="0"
}

CUDNN_LOCAL_REPO_INSTALLED="0"
CUDNN_PKG_NAME=""
function install_local_cudnn_repo() {
  if [[ "${CUDNN_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  pkgname="cudnn-local-repo-${shortname}-${CUDNN}"
  CUDNN_PKG_NAME="${pkgname}"
  local_deb_fn="${pkgname}_1.0-1_amd64.deb"
  local_deb_url="${NVIDIA_BASE_DL_URL}/cudnn/${CUDNN}/local_installers/${local_deb_fn}"

  # ${NVIDIA_BASE_DL_URL}/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
    "${local_deb_url}" -o /tmp/local-installer.deb

  dpkg -i /tmp/local-installer.deb

  rm -f /tmp/local-installer.deb

  cp /var/cudnn-local-repo-*-${CUDNN}*/cudnn-local-*-keyring.gpg /usr/share/keyrings

  CUDNN_LOCAL_REPO_INSTALLED="1"
}

function uninstall_local_cudnn_repo() {
  apt-get purge -yq "${CUDNN_PKG_NAME}"
  CUDNN_LOCAL_REPO_INSTALLED="0"
}

CUDNN8_LOCAL_REPO_INSTALLED="0"
CUDNN8_PKG_NAME=""
function install_local_cudnn8_repo() {
  if [[ "${CUDNN8_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  if   is_ubuntu ; then cudnn8_shortname="ubuntu2004"
  elif is_debian ; then cudnn8_shortname="debian11"
  else return 0 ; fi
  if   is_cuda12 ; then CUDNN8_CUDA_VER=12.0
  elif is_cuda11 ; then CUDNN8_CUDA_VER=11.8
  else CUDNN8_CUDA_VER="${CUDA_VERSION}" ; fi
  cudnn_pkg_version="${CUDNN_VERSION}-1+cuda${CUDNN8_CUDA_VER}"

  pkgname="cudnn-local-repo-${cudnn8_shortname}-${CUDNN_VERSION}"
  CUDNN8_PKG_NAME="${pkgname}"

  local_deb_fn="${pkgname}_1.0-1_amd64.deb"
  local_deb_url="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN}/local_installers/${CUDNN8_CUDA_VER}/${local_deb_fn}"
  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
      "${local_deb_url}" -o "${local_deb_fn}"

  dpkg -i "${local_deb_fn}"

  rm -f "${local_deb_fn}"

  cp /var/cudnn-local-repo-*-${CUDNN}*/cudnn-local-*-keyring.gpg /usr/share/keyrings
  CUDNN8_LOCAL_REPO_INSTALLED="1"
}

function uninstall_local_cudnn8_repo() {
  apt-get purge -yq "${CUDNN8_PKG_NAME}"
  CUDNN8_LOCAL_REPO_INSTALLED="0"
}

function install_nvidia_nccl() {
  local -r nccl_version="${NCCL_VERSION}-1+cuda${CUDA_VERSION}"

  if is_rocky ; then
    execute_with_retries "dnf -y -q install libnccl-${nccl_version} libnccl-devel-${nccl_version} libnccl-static-${nccl_version}"
  elif is_ubuntu ; then
    install_cuda_keyring_pkg

    apt-get update -qq

    if is_ubuntu18 ; then
      execute_with_retries \
        "apt-get install -q -y " \
          "libnccl2 libnccl-dev"
    else
      execute_with_retries \
        "apt-get install -q -y " \
          "libnccl2=${nccl_version} libnccl-dev=${nccl_version}"
    fi
  else
    echo "Unsupported OS: '${OS_NAME}'"
    # NB: this tarball is 10GB in size, but can be used to install NCCL on non-ubuntu systems
    # wget https://developer.download.nvidia.com/hpc-sdk/24.7/nvhpc_2024_247_Linux_x86_64_cuda_multi.tar.gz
    # tar xpzf nvhpc_2024_247_Linux_x86_64_cuda_multi.tar.gz
    # nvhpc_2024_247_Linux_x86_64_cuda_multi/install
    return
  fi
}

function is_src_nvidia() { [[ "${GPU_DRIVER_PROVIDER}" == "NVIDIA" ]] ; }
function is_src_os()     { [[ "${GPU_DRIVER_PROVIDER}" == "OS" ]] ; }

function install_nvidia_cudnn() {
  local major_version
  major_version="${CUDNN_VERSION%%.*}"
  local cudnn_pkg_version
  cudnn_pkg_version="${CUDNN_VERSION}-1+cuda${CUDA_VERSION}"

  if is_rocky ; then
    if is_cudnn8 ; then
      execute_with_retries "dnf -y -q install" \
        "libcudnn${major_version}" \
        "libcudnn${major_version}-devel"
    elif is_cudnn9 ; then
      execute_with_retries "dnf -y -q install" \
        "libcudnn9-static-cuda-${CUDA_VERSION%%.*}" \
        "libcudnn9-devel-cuda-${CUDA_VERSION%%.*}"
    else
      echo "Unsupported cudnn version: '${major_version}'"
    fi
  elif is_debian || is_ubuntu; then
    if is_debian12 && is_src_os ; then
      apt-get -y install nvidia-cudnn
    else
      local CUDNN="${CUDNN_VERSION%.*}"
      if is_cudnn8 ; then
        install_local_cudnn8_repo

        apt-get update -qq

        execute_with_retries \
          apt-get -y install --no-install-recommends \
            "libcudnn8=${cudnn_pkg_version}" \
            "libcudnn8-dev=${cudnn_pkg_version}"
      elif is_cudnn9 ; then
	install_cuda_keyring_pkg

        apt-get update -qq

        execute_with_retries \
          apt-get -y install --no-install-recommends \
          "libcudnn9-cuda-${CUDA_VERSION%%.*}" \
          "libcudnn9-dev-cuda-${CUDA_VERSION%%.*}" \
          "libcudnn9-static-cuda-${CUDA_VERSION%%.*}"
      else
        echo "Unsupported cudnn version: [${CUDNN_VERSION}]"
      fi
    fi
  elif is_ubuntu ; then
    local -a packages
    packages=(
      "libcudnn${major_version}=${cudnn_pkg_version}"
      "libcudnn${major_version}-dev=${cudnn_pkg_version}")
    execute_with_retries \
      "apt-get install -q -y --no-install-recommends ${packages[*]}"
  else
    echo "Unsupported OS: '${OS_NAME}'"
    exit 1
  fi

  ldconfig

  echo "NVIDIA cuDNN successfully installed for ${OS_NAME}."
}

CA_TMPDIR="$(mktemp -u -d -p /run/tmp -t ca_dir-XXXX)"
PSN="$(get_metadata_attribute private_secret_name)"
readonly PSN
function configure_dkms_certs() {
  if [[ -z "${PSN}" ]]; then
      echo "No signing secret provided.  skipping";
      return 0
  fi

  mkdir -p "${CA_TMPDIR}"

  # If the private key exists, verify it
  if [[ -f "${CA_TMPDIR}/db.rsa" ]]; then
    echo "Private key material exists"

    local expected_modulus_md5sum
    expected_modulus_md5sum=$(get_metadata_attribute cert_modulus_md5sum)
    if [[ -n "${expected_modulus_md5sum}" ]]; then
      modulus_md5sum="${expected_modulus_md5sum}"
    else
      modulus_md5sum="bd40cf5905c7bba4225d330136fdbfd3"
    fi

    # Verify that cert md5sum matches expected md5sum
    if [[ "${modulus_md5sum}" != "$(openssl rsa -noout -modulus -in \"${CA_TMPDIR}/db.rsa\" | openssl md5 | awk '{print $2}')" ]]; then
        echo "unmatched rsa key modulus"
    fi
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/dkms/mok.key

    # Verify that key md5sum matches expected md5sum
    if [[ "${modulus_md5sum}" != "$(openssl x509 -noout -modulus -in /var/lib/dkms/mok.pub | openssl md5 | awk '{print $2}')" ]]; then
        echo "unmatched x509 cert modulus"
    fi

    return
  fi


  # Retrieve cloud secrets keys
  local sig_priv_secret_name
  sig_priv_secret_name="${PSN}"
  local sig_pub_secret_name
  sig_pub_secret_name="$(get_metadata_attribute public_secret_name)"
  local sig_secret_project
  sig_secret_project="$(get_metadata_attribute secret_project)"
  local sig_secret_version
  sig_secret_version="$(get_metadata_attribute secret_version)"

  # If metadata values are not set, do not write mok keys
  if [[ -z "${sig_priv_secret_name}" ]]; then return 0 ; fi

  # Write private material to volatile storage
  gcloud secrets versions access "${sig_secret_version}" \
         --project="${sig_secret_project}" \
         --secret="${sig_priv_secret_name}" \
      | dd status=none of="${CA_TMPDIR}/db.rsa"

  # Write public material to volatile storage
  gcloud secrets versions access "${sig_secret_version}" \
         --project="${sig_secret_project}" \
         --secret="${sig_pub_secret_name}" \
      | base64 --decode \
      | dd status=none of="${CA_TMPDIR}/db.der"

  # symlink private key and copy public cert from volatile storage for DKMS
  if is_ubuntu ; then
    mkdir -p /var/lib/shim-signed/mok
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/shim-signed/mok/MOK.priv
    cp -f "${CA_TMPDIR}/db.der" /var/lib/shim-signed/mok/MOK.der
  else
    mkdir -p /var/lib/dkms/
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/dkms/mok.key
    cp -f "${CA_TMPDIR}/db.der" /var/lib/dkms/mok.pub
  fi
}

function clear_dkms_key {
  if [[ -z "${PSN}" ]]; then
      echo "No signing secret provided.  skipping" >&2
      return 0
  fi
  rm -rf "${CA_TMPDIR}" /var/lib/dkms/mok.key /var/lib/shim-signed/mok/MOK.priv
}

function add_contrib_component() {
  if is_debian12 ; then
      # Include in sources file components on which nvidia-kernel-open-dkms depends
      local -r debian_sources="/etc/apt/sources.list.d/debian.sources"
      local components="main contrib"

      sed -i -e "s/Components: .*$/Components: ${components}/" "${debian_sources}"
  elif is_debian ; then
      sed -i -e 's/ main$/ main contrib/' /etc/apt/sources.list
  fi
}

function add_nonfree_components() {
  if is_src_nvidia ; then return; fi
  if is_debian12 ; then
      # Include in sources file components on which nvidia-open-kernel-dkms depends
      local -r debian_sources="/etc/apt/sources.list.d/debian.sources"
      local components="main contrib non-free non-free-firmware"

      sed -i -e "s/Components: .*$/Components: ${components}/" "${debian_sources}"
  elif is_debian ; then
      sed -i -e 's/ main$/ main contrib non-free/' /etc/apt/sources.list
  fi
}

function add_repo_nvidia_container_toolkit() {
  if is_debian || is_ubuntu ; then
      local kr_path=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
      local sources_list_path=/etc/apt/sources.list.d/nvidia-container-toolkit.list
      # https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
      test -f "${kr_path}" ||
        curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
          | gpg --dearmor -o "${kr_path}"

      test -f "${sources_list_path}" ||
        curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
          | perl -pe "s#deb https://#deb [signed-by=${kr_path}] https://#g" \
          | tee "${sources_list_path}"
  fi
}

function add_repo_cuda() {
  if is_debian || is_ubuntu ; then
    local kr_path=/usr/share/keyrings/cuda-archive-keyring.gpg
    local sources_list_path="/etc/apt/sources.list.d/cuda-${shortname}-x86_64.list"
echo "deb [signed-by=${kr_path}] https://developer.download.nvidia.com/compute/cuda/repos/${shortname}/x86_64/ /" \
    | sudo tee "${sources_list_path}"
    curl "${NVIDIA_BASE_DL_URL}/cuda/repos/${shortname}/x86_64/cuda-archive-keyring.gpg" \
      -o "${kr_path}"
  elif is_rocky ; then
    execute_with_retries "dnf config-manager --add-repo ${NVIDIA_ROCKY_REPO_URL}"
    execute_with_retries "dnf clean all"
  fi
}

readonly uname_r=$(uname -r)
function build_driver_from_github() {
  if is_ubuntu ; then
    mok_key=/var/lib/shim-signed/mok/MOK.priv
    mok_der=/var/lib/shim-signed/mok/MOK.der
  else
    mok_key=/var/lib/dkms/mok.key
    mok_der=/var/lib/dkms/mok.pub
  fi
  workdir=/opt/install-nvidia-driver
  mkdir -p "${workdir}"
  pushd "${workdir}"
  test -d /opt/install-nvidia-driver/open-gpu-kernel-modules ||
    git -c advice.detachedHead=false \
      clone https://github.com/NVIDIA/open-gpu-kernel-modules.git \
      --branch "${DRIVER_VERSION}" \
      --single-branch \
      > /dev/null
  cd open-gpu-kernel-modules

  time make -j$(nproc) modules \
    >  /var/log/open-gpu-kernel-modules-build.log \
    2> /var/log/open-gpu-kernel-modules-build_error.log

  if [[ -n "${PSN}" ]]; then
    configure_dkms_certs
    for module in $(find kernel-open -name '*.ko'); do
      "/lib/modules/${uname_r}/build/scripts/sign-file" sha256 \
      "${mok_key}" \
      "${mok_der}" \
      "${module}"
    done
    clear_dkms_key
  fi

  make modules_install \
    >> /var/log/open-gpu-kernel-modules-build.log \
    2>> /var/log/open-gpu-kernel-modules-build_error.log
  popd
}

function build_driver_from_packages() {
  if is_ubuntu || is_debian ; then
    local pkglist=("nvidia-driver-${DRIVER}-server-open")
    if is_debian ; then
      pkglist=(
        "firmware-nvidia-gsp=${DRIVER_VERSION}-1"
        "nvidia-legacy-check=${DRIVER_VERSION}-1"
        "nvidia-smi=${DRIVER_VERSION}-1"
        "nvidia-alternative=${DRIVER_VERSION}-1"
        "libnvidia-ml1=${DRIVER_VERSION}-1"
        "firmware-nvidia-gsp=${DRIVER_VERSION}-1"
        "nvidia-kernel-open-dkms=${DRIVER_VERSION}-1"
        "nvidia-kernel-support=${DRIVER_VERSION}-1"
        "nvidia-modprobe=${DRIVER_VERSION}-1"
      )
    fi
    add_contrib_component
    apt-get update -qq
    execute_with_retries "apt-get install -y -qq --no-install-recommends dkms"
    configure_dkms_certs
    time execute_with_retries "apt-get install -y -qq --no-install-recommends ${pkglist[@]}"

  elif is_rocky ; then
    configure_dkms_certs
    time execute_with_retries "dnf -y -q module install nvidia-driver:${DRIVER}-open"
  fi
  clear_dkms_key
}

function install_nvidia_userspace_runfile() {
  if test -d /run/nvidia-userspace ; then return ; fi
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${USERSPACE_URL}" -o userspace.run
  time bash "./userspace.run" --no-kernel-modules --silent --install-libglvnd \
    > /dev/null 2>&1
  rm -f userspace.run
  mkdir -p /run/nvidia-userspace
}

function install_cuda_runfile() {
  if test -d /run/nvidia-cuda ; then return ; fi
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${NVIDIA_CUDA_URL}" -o cuda.run
  time bash "./cuda.run" --silent --toolkit --no-opengl-libs
  rm -f cuda.run
  mkdir -p /run/nvidia-cuda
}

function install_cuda_toolkit() {
  local cuda_package=cuda-toolkit
  if is_debian12 ; then
    cuda_package="${cuda_package}=${CUDA_FULL_VERSION}-1"
  elif [[ -n "${CUDA_VERSION}" ]]; then
    cuda_package="${cuda_package}-${CUDA_VERSION//./-}"
  fi
  readonly cuda_package
  if is_ubuntu || is_debian ; then
#    if is_ubuntu ; then execute_with_retries "apt-get install -y -qq --no-install-recommends cuda-drivers-${DRIVER}=${DRIVER_VERSION}-1" ; fi
    time execute_with_retries "apt-get install -y -qq --no-install-recommends ${cuda_package}"
  elif is_rocky ; then
    time execute_with_retries "dnf -y -q install ${cuda_package}"
  fi
}

function install_drivers_aliases() {
  if ! is_debian12 ; then return ; fi
  if   is_cuda11   ; then return ; fi
  # Add a modprobe alias to prefer the open kernel modules
  local conffile="/etc/modprobe.d/nvidia-aliases.conf"
  echo -n "" > "${conffile}"
  local prefix
  if   is_src_os     ; then prefix="nvidia-current-open"
  elif is_src_nvidia ; then prefix="nvidia-current" ; fi
  local suffix
  for suffix in uvm peermem modeset drm; do
    echo "alias nvidia-${suffix} ${prefix}-${suffix}" >> "${conffile}"
  done
  echo "alias nvidia ${prefix}" >> "${conffile}"
}

function load_kernel_module() {
  modprobe -r nvidia || echo "unable to unload the nvidia module"
  install_drivers_aliases
  depmod -a
  modprobe nvidia
}

# Install NVIDIA GPU driver provided by NVIDIA
function install_nvidia_gpu_driver() {
  if is_debian12 && [[ "${GPU_DRIVER_PROVIDER}" == "OS" ]] ; then
    add_nonfree_components
    add_repo_nvidia_container_toolkit
    apt-get update -qq
    configure_dkms_certs
    apt-get -yq install \
          nvidia-container-toolkit \
          dkms \
          nvidia-open-kernel-dkms \
          nvidia-open-kernel-support \
          nvidia-smi \
          libglvnd0 \
          libcuda1
    clear_dkms_key
    load_kernel_module
  elif is_ubuntu18 || is_debian11 || is_debian10 || (is_debian && is_cuda11) ; then

    install_nvidia_userspace_runfile

    build_driver_from_github

    load_kernel_module

    install_cuda_runfile
  elif is_debian || is_ubuntu ; then
    install_cuda_keyring_pkg

    build_driver_from_packages

    load_kernel_module

    install_cuda_toolkit
  elif is_rocky ; then
    add_repo_cuda

    build_driver_from_packages

    load_kernel_module

    install_cuda_toolkit

  else
    echo "Unsupported OS: '${OS_NAME}'"
    exit 1
  fi
  ldconfig
  echo "NVIDIA GPU driver provided by NVIDIA was installed successfully"
}

# Collects 'gpu_utilization' and 'gpu_memory_utilization' metrics
function install_gpu_agent() {
  if ! command -v pip; then
    execute_with_retries "apt-get install -y -qq python-pip"
  fi
  local install_dir=/opt/gpu-utilization-agent
  mkdir -p "${install_dir}"
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${GPU_AGENT_REPO_URL}/requirements.txt" -o "${install_dir}/requirements.txt"
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${GPU_AGENT_REPO_URL}/report_gpu_metrics.py" \
    | sed -e 's/-u --format=/--format=/' \
    | dd status=none of="${install_dir}/report_gpu_metrics.py"
  pip install -r "${install_dir}/requirements.txt"

  # Generate GPU service.
  cat <<EOF >/lib/systemd/system/gpu-utilization-agent.service
[Unit]
Description=GPU Utilization Metric Agent

[Service]
Type=simple
PIDFile=/run/gpu_agent.pid
ExecStart=/bin/bash --login -c 'python "${install_dir}/report_gpu_metrics.py"'
User=root
Group=root
WorkingDirectory=/
Restart=always

[Install]
WantedBy=multi-user.target
EOF
  # Reload systemd manager configuration
  systemctl daemon-reload
  # Enable gpu-utilization-agent service
  systemctl --no-reload --now enable gpu-utilization-agent.service
}

readonly bdcfg="/usr/local/bin/bdconfig"
function set_hadoop_property() {
  local -r config_file=$1
  local -r property=$2
  local -r value=$3
  "${bdcfg}" set_property \
    --configuration_file "${HADOOP_CONF_DIR}/${config_file}" \
    --name "${property}" --value "${value}" \
    --clobber
}

function configure_yarn() {
  if [[ ! -f ${HADOOP_CONF_DIR}/resource-types.xml ]]; then
    printf '<?xml version="1.0" ?>\n<configuration/>' >"${HADOOP_CONF_DIR}/resource-types.xml"
  fi
  set_hadoop_property 'resource-types.xml' 'yarn.resource-types' 'yarn.io/gpu'

  set_hadoop_property 'capacity-scheduler.xml' \
    'yarn.scheduler.capacity.resource-calculator' \
    'org.apache.hadoop.yarn.util.resource.DominantResourceCalculator'

  set_hadoop_property 'yarn-site.xml' 'yarn.resource-types' 'yarn.io/gpu'
}

# This configuration should be applied only if GPU is attached to the node
function configure_yarn_nodemanager() {
  set_hadoop_property 'yarn-site.xml' 'yarn.nodemanager.resource-plugins' 'yarn.io/gpu'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices' 'auto'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables' $NVIDIA_SMI_PATH
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.mount' 'true'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.mount-path' '/sys/fs/cgroup'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.hierarchy' 'yarn'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.container-executor.class' \
    'org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor'
  set_hadoop_property 'yarn-site.xml' 'yarn.nodemanager.linux-container-executor.group' 'yarn'

  # Fix local dirs access permissions
  local yarn_local_dirs=()
  readarray -d ',' yarn_local_dirs < <("${bdcfg}" get_property_value \
    --configuration_file "${HADOOP_CONF_DIR}/yarn-site.xml" \
    --name "yarn.nodemanager.local-dirs" 2>/dev/null | tr -d '\n')
  chown yarn:yarn -R "${yarn_local_dirs[@]/,/}"
}

function configure_gpu_exclusive_mode() {
  # check if running spark 3, if not, enable GPU exclusive mode
  local spark_version
  spark_version=$(spark-submit --version 2>&1 | sed -n 's/.*version[[:blank:]]\+\([0-9]\+\.[0-9]\).*/\1/p' | head -n1)
  if [[ ${spark_version} != 3.* ]]; then
    # include exclusive mode on GPU
    nvsmi -c EXCLUSIVE_PROCESS
  fi
}

function fetch_mig_scripts() {
  mkdir -p /usr/local/yarn-mig-scripts
  sudo chmod 755 /usr/local/yarn-mig-scripts
  wget -P /usr/local/yarn-mig-scripts/ https://raw.githubusercontent.com/NVIDIA/spark-rapids-examples/branch-22.10/examples/MIG-Support/yarn-unpatched/scripts/nvidia-smi
  wget -P /usr/local/yarn-mig-scripts/ https://raw.githubusercontent.com/NVIDIA/spark-rapids-examples/branch-22.10/examples/MIG-Support/yarn-unpatched/scripts/mig2gpu.sh
  sudo chmod 755 /usr/local/yarn-mig-scripts/*
}

function configure_gpu_script() {
  # Download GPU discovery script
  local -r spark_gpu_script_dir='/usr/lib/spark/scripts/gpu'
  mkdir -p ${spark_gpu_script_dir}
  # need to update the getGpusResources.sh script to look for MIG devices since if multiple GPUs nvidia-smi still
  # lists those because we only disable the specific GIs via CGROUPs. Here we just create it based off of:
  # https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
  cat > ${spark_gpu_script_dir}/getGpusResources.sh <<'EOF'
#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

CACHE_FILE="/var/run/nvidia-gpu-index.txt"
if [[ -f "${CACHE_FILE}" ]]; then
  cat "${CACHE_FILE}"
  exit 0
fi
NV_SMI_L_CACHE_FILE="/var/run/nvidia-smi_-L.txt"
if [[ -f "${NV_SMI_L_CACHE_FILE}" ]]; then
  NVIDIA_SMI_L="$(cat "${NV_SMI_L_CACHE_FILE}")"
else
  NVIDIA_SMI_L="$(nvidia-smi -L | tee "${NV_SMI_L_CACHE_FILE}")"
fi

NUM_MIG_DEVICES=$(echo "${NVIDIA_SMI_L}" | grep -e MIG -e H100 -e A100 | wc -l || echo '0')

if [[ "${NUM_MIG_DEVICES}" -gt "0" ]] ; then
  MIG_INDEX=$(( $NUM_MIG_DEVICES - 1 ))
  ADDRS="$(perl -e 'print(join(q{,},map{qq{"$_"}}(0..$ARGV[0])),$/)' "${MIG_INDEX}")"
else
  ADDRS=$(nvidia-smi --query-gpu=index --format=csv,noheader | perl -e 'print(join(q{,},map{chomp; qq{"$_"}}<STDIN>))')
fi

echo {\"name\": \"gpu\", \"addresses\":[$ADDRS]} | tee "${CACHE_FILE}"
EOF

  chmod a+rwx -R ${spark_gpu_script_dir}
}

function configure_gpu_isolation() {
  # enable GPU isolation
  sed -i "s/yarn\.nodemanager\.linux\-container\-executor\.group\=.*$/yarn\.nodemanager\.linux\-container\-executor\.group\=yarn/g" "${HADOOP_CONF_DIR}/container-executor.cfg"
  if [[ $IS_MIG_ENABLED -ne 0 ]]; then
    # configure the container-executor.cfg to have major caps
    printf '\n[gpu]\nmodule.enabled=true\ngpu.major-device-number=%s\n\n[cgroups]\nroot=/sys/fs/cgroup\nyarn-hierarchy=yarn\n' $MIG_MAJOR_CAPS >> "${HADOOP_CONF_DIR}/container-executor.cfg"
    printf 'export MIG_AS_GPU_ENABLED=1\n' >> "${HADOOP_CONF_DIR}/yarn-env.sh"
    printf 'export ENABLE_MIG_GPUS_FOR_CGROUPS=1\n' >> "${HADOOP_CONF_DIR}/yarn-env.sh"
  else
    printf '\n[gpu]\nmodule.enabled=true\n[cgroups]\nroot=/sys/fs/cgroup\nyarn-hierarchy=yarn\n' >> "${HADOOP_CONF_DIR}/container-executor.cfg"
  fi

  # Configure a systemd unit to ensure that permissions are set on restart
  cat >/etc/systemd/system/dataproc-cgroup-device-permissions.service<<EOF
[Unit]
Description=Set permissions to allow YARN to access device directories

[Service]
ExecStart=/bin/bash -c "chmod a+rwx -R /sys/fs/cgroup/cpu,cpuacct; chmod a+rwx -R /sys/fs/cgroup/devices"

[Install]
WantedBy=multi-user.target
EOF

  systemctl enable dataproc-cgroup-device-permissions
  systemctl start dataproc-cgroup-device-permissions
}

nvsmi_works="0"
function nvsmi() {
  local nvsmi="/usr/bin/nvidia-smi"
  if   [[ "${nvsmi_works}" == "1" ]] ; then echo "nvidia-smi is working" >&2
  elif [[ ! -f "${nvsmi}" ]]         ; then echo "nvidia-smi not installed" >&2 ; return 0
  elif ! eval "${nvsmi} > /dev/null" ; then echo "nvidia-smi fails" >&2 ; return 0
  else nvsmi_works="1" ; fi

  if [[ "$1" == "-L" ]] ; then
    local NV_SMI_L_CACHE_FILE="/var/run/nvidia-smi_-L.txt"
    if [[ -f "${NV_SMI_L_CACHE_FILE}" ]]; then cat "${NV_SMI_L_CACHE_FILE}"
    else "${nvsmi}" $* | tee "${NV_SMI_L_CACHE_FILE}" ; fi

    return 0
  fi

  "${nvsmi}" $*
}

function main() {
  if ! is_debian && ! is_ubuntu && ! is_rocky ; then
    echo "Unsupported OS: '$(os_name)'"
    exit 1
  fi

  remove_old_backports

  if is_debian || is_ubuntu ; then
    export DEBIAN_FRONTEND=noninteractive
    execute_with_retries "apt-get install -y -qq pciutils linux-headers-${uname_r}"
  elif is_rocky ; then
    execute_with_retries "dnf -y -q update --exclude=systemd*,kernel*"
    execute_with_retries "dnf -y -q install pciutils gcc"

    local dnf_cmd="dnf -y -q install kernel-devel-${uname_r}"
    local kernel_devel_pkg_out="$(eval "${dnf_cmd} 2>&1")"
    if [[ "${kernel_devel_pkg_out}" =~ 'Unable to find a match: kernel-devel-' ]] ; then
      # this kernel-devel may have been migrated to the vault
      local vault="https://download.rockylinux.org/vault/rocky/$(os_version)"
      execute_with_retries dnf -y -q --setopt=localpkg_gpgcheck=1 install \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-core-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-modules-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-modules-core-${uname_r}.rpm" \
        "${vault}/AppStream/x86_64/os/Packages/k/kernel-devel-${uname_r}.rpm"
    else
      execute_with_retries "${dnf_cmd}"
    fi
  fi

  # This configuration should be run on all nodes
  # regardless if they have attached GPUs
  configure_yarn

  # Detect NVIDIA GPU
  if (lspci | grep -q NVIDIA); then
    # if this is called without the MIG script then the drivers are not installed
    migquery_result="$(nvsmi --query-gpu=mig.mode.current --format=csv,noheader)"
    if [[ "${migquery_result}" == "[N/A]" ]] ; then migquery_result="" ; fi
    NUM_MIG_GPUS="$(echo ${migquery_result} | uniq | wc -l)"

    if [[ "${NUM_MIG_GPUS}" -gt "0" ]] ; then
      if [[ "${NUM_MIG_GPUS}" -eq "1" ]]; then
        if (echo "${migquery_result}" | grep Enabled); then
          IS_MIG_ENABLED=1
          NVIDIA_SMI_PATH='/usr/local/yarn-mig-scripts/'
          MIG_MAJOR_CAPS=`grep nvidia-caps /proc/devices | cut -d ' ' -f 1`
          fetch_mig_scripts
        fi
      fi
    fi

    # if mig is enabled drivers would have already been installed
    if [[ $IS_MIG_ENABLED -eq 0 ]]; then
      install_nvidia_gpu_driver

      if [[ -n ${CUDNN_VERSION} ]]; then
        install_nvidia_nccl
        install_nvidia_cudnn
      fi
      #Install GPU metrics collection in Stackdriver if needed
      if [[ "${INSTALL_GPU_AGENT}" == "true" ]]; then
        install_gpu_agent
        echo 'GPU metrics agent successfully deployed.'
      else
        echo 'GPU metrics agent will not be installed.'
      fi

      # for some use cases, the kernel module needs to be removed before first use of nvidia-smi
      for module in nvidia_uvm nvidia_drm nvidia_modeset nvidia ; do
        rmmod ${module} > /dev/null 2>&1 || echo "unable to rmmod ${module}"
      done

      MIG_GPU_LIST="$(nvsmi -L | grep -e MIG -e H100 -e A100 || echo -n "")"
      if test -n "$(nvsmi -L)" ; then
	# cache the result of the gpu query
        ADDRS=$(nvsmi --query-gpu=index --format=csv,noheader | perl -e 'print(join(q{,},map{chomp; qq{"$_"}}<STDIN>))')
        echo "{\"name\": \"gpu\", \"addresses\":[$ADDRS]}" | tee "/var/run/nvidia-gpu-index.txt"
      fi
      NUM_MIG_GPUS="$(test -n "${MIG_GPU_LIST}" && echo "${MIG_GPU_LIST}" | wc -l || echo "0")"
      if [[ "${NUM_MIG_GPUS}" -gt "0" ]] ; then
        # enable MIG on every GPU
	for GPU_ID in $(echo ${MIG_GPU_LIST} | awk -F'[: ]' -e '{print $2}') ; do
	  nvsmi -i "${GPU_ID}" --multi-instance-gpu 1
	done

        NVIDIA_SMI_PATH='/usr/local/yarn-mig-scripts/'
        MIG_MAJOR_CAPS="$(grep nvidia-caps /proc/devices | cut -d ' ' -f 1)"
        fetch_mig_scripts
      else
        configure_gpu_exclusive_mode
      fi
    fi

    configure_yarn_nodemanager
    configure_gpu_script
    configure_gpu_isolation
  elif [[ "${ROLE}" == "Master" ]]; then
    configure_yarn_nodemanager
    configure_gpu_script
  fi

  # Restart YARN services if they are running already
  if [[ $(systemctl show hadoop-yarn-resourcemanager.service -p SubState --value) == 'running' ]]; then
    systemctl restart hadoop-yarn-resourcemanager.service
  fi
  if [[ $(systemctl show hadoop-yarn-nodemanager.service -p SubState --value) == 'running' ]]; then
    systemctl restart hadoop-yarn-nodemanager.service
  fi
}

main

GPU 드라이버 설치 확인

Dataproc 노드에 GPU 드라이버를 설치한 후 드라이버가 제대로 작동하는지 확인할 수 있습니다. Dataproc 클러스터의 마스터 노드에 SSH를 연결하고 다음 명령어를 실행합니다.

nvidia-smi

드라이버가 제대로 작동하는 경우 드라이버 버전과 GPU 통계가 출력에 표시됩니다(GPU 드라이버 설치 확인 참조).

Spark 구성

Spark에 작업 제출LD_PRELOAD 환경 변수와 함께 spark.executorEnv Spark 구성 런타임 환경 속성을 사용하여 필요한 라이브러리를 미리 로드할 수 있습니다.

예:

gcloud dataproc jobs submit spark --cluster=CLUSTER_NAME \
  --region=REGION \
  --class=org.apache.spark.examples.SparkPi \
  --jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \
  --properties=spark.executorEnv.LD_PRELOAD=libnvblas.so,spark.task.resource.gpu.amount=1,spark.executor.resource.gpu.amount=1,spark.executor.resource.gpu.discoveryScript=/usr/lib/spark/scripts/gpu/getGpusResources.sh

GPU 작업 예시

GPU로 실행할 때 유용한 다음 작업 중 하나를 실행하여 Dataproc에서 GPU를 테스트할 수 있습니다.

  1. Spark ML 예 중 하나를 실행합니다.
  2. 행렬 계산을 실행하려면 spark-shell를 사용하여 다음 예를 실행합니다.
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed._
import java.util.Random

def makeRandomSquareBlockMatrix(rowsPerBlock: Int, nBlocks: Int): BlockMatrix = {
  val range = sc.parallelize(1 to nBlocks)
  val indices = range.cartesian(range)
  return new BlockMatrix(
      indices.map(
          ij => (ij, Matrices.rand(rowsPerBlock, rowsPerBlock, new Random()))),
      rowsPerBlock, rowsPerBlock, 0, 0)
}

val N = 1024 * 4
val n = 2
val mat1 = makeRandomSquareBlockMatrix(N, n)
val mat2 = makeRandomSquareBlockMatrix(N, n)
val mat3 = mat1.multiply(mat2)
mat3.blocks.persist.count
println("Processing complete!")

다음 단계