Dataflow 是可用於執行各種資料處理模式的代管服務。此網站上的文件說明如何使用 Dataflow 部署批次和串流資料處理管道,包括使用服務功能的說明。
Apache Beam SDK 是開放原始碼程式設計模型,可讓您開發批次和串流管道。您可以使用 Apache Beam 程式建立管道,然後在 Dataflow 服務上執行管道。Apache Beam 說明文件為 Apache Beam 程式設計模型、SDK 和其他執行器提供深入的概念資訊和參考資料。
如要瞭解 Apache Beam 的基本概念,請參閱
Beam 導覽 和 Beam Playground。
Dataflow 教戰手冊存放區也提供可立即啟動的獨立管道,以及最常見的 Dataflow 用途。
Apache、Apache Beam、Beam、Beam 標誌和 Beam 螢火蟲吉祥物是 Apache 軟體基金會 (Apache Software Foundation) 在美國與/或其他國家/地區的註冊商標。
使用價值 $300 美元的免費抵免額,開始進行概念驗證
-
取得 Gemini 2.0 Flash Thinking 的存取權
-
每月免費使用 AI API 和 BigQuery 等熱門產品
-
不會自動收費,也不會要求您一定要購買特定方案
繼續探索超過 20 項一律免費的產品
使用超過 20 項實用的免費產品,包括 AI API、VM 和 data warehouse 等。
用途
用途
執行 HPC 高度平行工作負載
您可以在單一管道中執行高度平行化的工作負載,進而提高效率,並簡化工作流程管理。
串流
用途
用途
使用 Dataflow ML 執行推論
透過 Dataflow ML,您可以使用 Dataflow 部署及管理完整的機器學習 (ML) pipeline。使用機器學習模型,透過批次和串流管道執行本機和遠端推論。使用資料處理工具準備資料,以便用於模型訓練及處理模型生成的結果。
機器學習
串流
用途
用途
建立電子商務串流管道
建立端對端電子商務範例應用程式,將資料從網路商店串流至 BigQuery 和 Bigtable。這個範例應用程式說明瞭導入串流資料分析和即時人工智慧 (AI) 的常見用途和最佳做法。
電子商務
串流
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-09-04 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-09-04 (世界標準時間)。"],[[["\u003cp\u003eDataflow is a managed service for executing batch and streaming data processing pipelines, with comprehensive documentation available on deployment and feature usage.\u003c/p\u003e\n"],["\u003cp\u003eThe Apache Beam SDK, an open-source programming model, is used to create pipelines that can be run on the Dataflow service, and its documentation can be found on the Apache website.\u003c/p\u003e\n"],["\u003cp\u003eVarious guides, references, and resources are provided, including quickstarts for creating pipelines in Java, Python, and Go, along with troubleshooting information.\u003c/p\u003e\n"],["\u003cp\u003eDataflow supports highly parallel workloads, machine learning inference, and the creation of ecommerce streaming pipelines, which are detailed in use case examples.\u003c/p\u003e\n"],["\u003cp\u003eThe documentation provides access to code samples, pricing information, quotas, release notes, support and billing help, all relevant to the managed service.\u003c/p\u003e\n"]]],[],null,["# Dataflow documentation\n======================\n\n[Read product documentation](/dataflow/docs/overview)\nDataflow is a managed service for executing a wide variety of data\nprocessing patterns. The documentation on this site shows you how to deploy\nyour batch and streaming data processing pipelines using\nDataflow, including directions for using service features.\n\n\nThe Apache Beam SDK\nis an open source programming model that enables you to develop both batch\nand streaming pipelines. You create your pipelines with an Apache Beam\nprogram and then run them on the Dataflow service. The\n[Apache Beam\ndocumentation](https://beam.apache.org/documentation/) provides in-depth conceptual information and reference\nmaterial for the Apache Beam programming model, SDKs, and other runners.\n\nTo learn basic Apache Beam concepts, see the [Tour of Beam](https://tour.beam.apache.org/) and [Beam Playground](https://play.beam.apache.org/).\nThe [Dataflow Cookbook](https://github.com/GoogleCloudPlatform/dataflow-cookbook) repository also provides ready-to-launch and self-contained pipelines\nand the most common Dataflow use cases. \n*Apache, Apache Beam, Beam, the\nBeam logo, and the Beam firefly mascot are registered trademarks of The Apache Software Foundation in the\nUnited States and/or other countries.* [Get started for free](https://console.cloud.google.com/freetrial) \n\n#### Start your proof of concept with $300 in free credit\n\n- Get access to Gemini 2.0 Flash Thinking\n- Free monthly usage of popular products, including AI APIs and BigQuery\n- No automatic charges, no commitment \n[View free product offers](/free/docs/free-cloud-features#free-tier) \n\n#### Keep exploring with 20+ always-free products\n\n\nAccess 20+ free products for common use cases, including AI APIs, VMs, data warehouses,\nand more.\n\nDocumentation resources\n-----------------------\n\nFind quickstarts and guides, review key references, and get help with common issues. \nformat_list_numbered\n\n### Guides\n\n-\n\n [Create a Dataflow pipeline using Java](/dataflow/docs/quickstarts/create-pipeline-java)\n\n-\n\n [Create a Dataflow pipeline using Python](/dataflow/docs/quickstarts/create-pipeline-python)\n\n-\n\n [Create a Dataflow pipeline using Go](/dataflow/docs/quickstarts/create-pipeline-go)\n\n-\n\n [Create a streaming pipeline using a Dataflow template](/dataflow/docs/quickstarts/create-streaming-pipeline-template)\n\n-\n\n [Build and run a Flex Template](/dataflow/docs/guides/templates/using-flex-templates)\n\n-\n\n [Deploy Dataflow pipelines](/dataflow/docs/guides/deploying-a-pipeline)\n\n-\n\n [Develop with notebooks](/dataflow/docs/guides/interactive-pipeline-development)\n\n-\n\n [Troubleshooting and debugging](/dataflow/docs/guides/troubleshooting-your-pipeline)\n\nfind_in_page\n\n### Reference\n\n-\n\n [Install the Apache Beam SDK](/dataflow/docs/guides/installing-beam-sdk)\n\n-\n\n [Java SDK](https://beam.apache.org/documentation/sdks/javadoc/current/)\n\n-\n\n [Python SDK](https://beam.apache.org/documentation/sdks/pydoc/current/)\n\n-\n\n [Go SDK](https://pkg.go.dev/github.com/apache/beam/sdks/v2/go/pkg/beam)\n\n-\n\n [SDK version support status](/dataflow/docs/support/sdk-version-support-status)\n\n-\n\n [REST API](/dataflow/docs/reference/rest)\n\n-\n\n [gcloud command-line functions](/sdk/gcloud/reference/dataflow)\n\n-\n\n [Google-provided templates](/dataflow/docs/concepts/dataflow-templates)\n\ninfo\n\n### Resources\n\n-\n\n [Dataflow code samples](/dataflow/docs/samples)\n\n-\n\n [Pricing](/dataflow/pricing)\n\n-\n\n [Quotas and limits](/dataflow/quotas)\n\n-\n\n [Release Notes](/dataflow/docs/release-notes)\n\n-\n\n [Getting support](/dataflow/docs/support/getting-support)\n\n-\n\n [Billing questions](/dataflow/docs/support/billing-questions)\n\nRelated resources\n-----------------\n\nExplore self-paced training, use cases, reference architectures, and code samples with examples of how to use and connect Google Cloud services. Use case \nUse cases\n\n### Run HPC highly parallel workloads\n\n\nWith Dataflow, you can run your highly parallel workloads in a single pipeline, improving efficiency and making your workflow easier to manage.\n\nStreaming\n\n\u003cbr /\u003e\n\n[Learn more](/dataflow/docs/hpc-ep) \nUse case \nUse cases\n\n### Run inference with Dataflow ML\n\n\nDataflow ML lets you use Dataflow to deploy and manage complete machine learning (ML) pipelines. Use ML models to do local and remote inference with batch and streaming pipelines. Use data processing tools to prepare your data for model training and to process the results of the models.\n\nML Streaming\n\n\u003cbr /\u003e\n\n[Learn more](/dataflow/docs/machine-learning) \nUse case \nUse cases\n\n### Create an ecommerce streaming pipeline\n\n\nBuild an end-to-end ecommerce sample application that streams data from a webstore to BigQuery and Bigtable. The sample application illustrates common use cases and best practices for implementing streaming data analytics and real-time artificial intelligence (AI).\n\necommerce Streaming\n\n\u003cbr /\u003e\n\n[Learn more](/dataflow/docs/tutorials/ecommerce-retail-pipeline)\n\nRelated videos\n--------------"]]