Menulis dari Dataflow ke Apache Iceberg

Untuk menulis dari Dataflow ke Apache Iceberg, gunakan konektor I/O terkelola.

Dependensi

Tambahkan dependensi berikut ke project Anda:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

Konfigurasi

Untuk Apache Iceberg, Managed I/O menggunakan parameter konfigurasi:

Nama Jenis data Deskripsi
table string ID tabel Apache Iceberg. Contoh: "db.table1".
catalog_name string Nama katalog. Contoh: "local".
catalog_properties map Peta properti konfigurasi untuk Apache Iceberg katalog. Properti yang diperlukan bergantung pada katalog. Untuk informasi selengkapnya, lihat CatalogUtil dalam dokumentasi Apache Iceberg.
config_properties map Kumpulan opsional properti konfigurasi Hadoop. Untuk informasi selengkapnya, lihat CatalogUtil dalam dokumentasi Apache Iceberg.

Contoh

Contoh berikut menulis data JSON dalam memori ke tabel Apache Iceberg.

Java

Untuk melakukan autentikasi ke Dataflow, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import com.google.common.collect.ImmutableMap;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.JsonToRow;
import org.apache.beam.sdk.values.PCollectionRowTuple;

public class ApacheIcebergWrite {
  static final List<String> TABLE_ROWS = Arrays.asList(
      "{\"id\":0, \"name\":\"Alice\"}",
      "{\"id\":1, \"name\":\"Bob\"}",
      "{\"id\":2, \"name\":\"Charles\"}"
  );

  static final String CATALOG_TYPE = "hadoop";

  // The schema for the table rows.
  public static final Schema SCHEMA = new Schema.Builder()
      .addStringField("name")
      .addInt64Field("id")
      .build();

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);

    @Description("The name of the table to write to")
    String getTableName();

    void setTableName(String value);
  }

  public static void main(String[] args) {

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    //   --tableName= $TABLE_NAME
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", CATALOG_TYPE)
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("table", options.getTableName())
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        .build();

    // Build the pipeline.
    pipeline.apply(Create.of(TABLE_ROWS))
        .apply(JsonToRow.withSchema(SCHEMA))
        .apply(Managed.write(Managed.ICEBERG).withConfig(config));

    pipeline.run().waitUntilFinish();
  }
}