Cambia el nombre de las columnas, cópialas, bórralas o mantenlas
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En esta página, se explica cómo cambiar el nombre de las columnas, copiarlas, borrarlas o conservarlas cuando preparas
los datos en el lugar de trabajo de Wrangler de Cloud Data Fusion Studio.
Cambiar el nombre de una columna
Para cambiar el nombre de una columna en el espacio de trabajo de Wrangler, haz clic en el nombre de la columna y, luego, ingresa un nombre nuevo. Wrangler agrega la directiva rename a la receta.
Cómo copiar una columna
Para comprender el impacto de usar una directiva nueva en un conjunto de datos, puedes copiar una
columna en una columna nueva con un nombre diferente y aplicar directivas allí.
En la pestaña Datos, ve al nombre de una columna y haz clic en la flecha del expansor arrow_drop_down.
Selecciona Copiar columna y, luego, ingresa un nombre para la columna nueva.
Wrangler copia la columna y agrega la directiva copy a la receta.
Borra una columna
En el caso de los conjuntos de datos con muchas columnas, puedes mejorar el rendimiento de la canalización y ahorrar recursos si borras las columnas innecesarias. Con menos columnas, la ejecución de la canalización se completa más rápido. Esto es especialmente cierto para los flujos de trabajo que incluyen una transformación de Joiner.
Para borrar una columna de un conjunto de datos, sigue estos pasos:
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eThis guide details how to manage columns within the Cloud Data Fusion Wrangler workspace, including renaming, copying, deleting, and keeping columns.\u003c/p\u003e\n"],["\u003cp\u003eRenaming a column is done by clicking on the column name and entering the new one, which will add the \u003ccode\u003erename\u003c/code\u003e directive to the recipe.\u003c/p\u003e\n"],["\u003cp\u003eCopying a column involves using the "Copy column" option from the column's dropdown, which then allows you to apply directives to a duplicated column, adding the \u003ccode\u003ecopy\u003c/code\u003e directive to the recipe.\u003c/p\u003e\n"],["\u003cp\u003eDeleting a column is done via the "Delete column" option, reducing the dataset's size and improving pipeline efficiency, and this adds the \u003ccode\u003edrop\u003c/code\u003e directive to the recipe.\u003c/p\u003e\n"],["\u003cp\u003eThe "Keep column" feature deletes all columns except the selected one, making it possible to quickly isolate a single column, which adds the \u003ccode\u003ekeep\u003c/code\u003e directive to the recipe.\u003c/p\u003e\n"]]],[],null,["# Rename, copy, delete, or keep columns\n\nThis page explains how to rename, copy, delete, or keep columns when you prepare\ndata in the Wrangler workspace of the Cloud Data Fusion Studio.\n\nRename a column\n---------------\n\nTo rename a column in the Wrangler workspace, click a column name and enter a\nnew name. Wrangler adds the `rename` directive to the recipe.\n\nCopy a column\n-------------\n\nTo understand the impact of using a new directive on a dataset, you can copy a\ncolumn into a new column with a different name and apply directives there.\n\nTo copy a column, follow these steps:\n\n1. [Go to Wrangler workspace in Cloud Data Fusion](/data-fusion/docs/concepts/wrangler-overview#navigate-to-wrangler).\n2. On the **Data** tab, go to a column name and click the arrow_drop_down expander arrow.\n3. Select **Copy column** and enter a name for the new column.\n\nWrangler copies the column and adds the `copy` directive to the recipe.\n\nDelete a column\n---------------\n\nFor datasets with many columns, you can improve pipeline performance and save\nresources by deleting unnecessary columns. With fewer columns, the pipeline\nrun completes faster. This is especially true for pipelines that include a\nJoiner transformation.\n\nTo delete a column from a dataset, follow these steps:\n\n1. [Go to Wrangler workspace in Cloud Data Fusion](/data-fusion/docs/concepts/wrangler-overview#navigate-to-wrangler).\n2. On the **Data** tab, go to a column name and click the arrow_drop_down expander arrow.\n3. Select **Delete column**.\n\nWrangler deletes the column and adds the `drop` directive to the recipe.\n\nKeep a column\n-------------\n\nYou can keep a column in a dataset and delete all other columns.\n\nTo keep a column, follow these steps:\n\n1. [Go to Wrangler workspace in Cloud Data Fusion](/data-fusion/docs/concepts/wrangler-overview#navigate-to-wrangler).\n2. On the **Data** tab, go to a column name and click the arrow_drop_down expander arrow.\n3. Select **Keep column**.\n\nWrangler deletes all columns in the dataset, except the one you chose, and adds\nthe `keep` directive to the recipe.\n\nWhat's next\n-----------\n\n- Learn more about [Wrangler directives](/data-fusion/docs/concepts/wrangler-overview#apply_directives)."]]