扩缩环境

Cloud Composer 1 |Cloud Composer 2 |Cloud Composer 3

本页面介绍如何扩缩 Cloud Composer 环境。

纵向和横向扩缩

在 Cloud Composer 1 中,您无需为 Cloud Composer 和 Airflow 组件(例如工作器和调度器)定义特定的 CPU 和内存资源。只需为节点中的节点指定机器数量和类型 集群环境

横向扩缩选项:

  • 调整节点数量
  • 调整调度器的数量

纵向扩缩选项:

  • 调整 Cloud SQL 实例的机器类型
  • 调整网络服务器机器类型

调整调度器参数

您的环境可以同时运行多个 Airflow 调度器。使用多个调度器将负载分散到多个 调度程序实例,以提高性能和可靠性。

如果您的环境使用 Airflow 2,您可以指定多个调度器, 节点数量

增加调度器的数量并不总是可以提高 Airflow 性能。例如,仅使用一个调度器的性能可能优于使用两个调度器。如果额外的调度器未得到利用,则可能会发生这种情况,因而会占用环境的资源,而不会提升整体性能。实际的调度器性能取决于 Airflow 工作器的数量、在您的环境中运行的 DAG 和任务的数量,以及 Airflow 和环境的配置。

我们建议您先使用两个调度器,然后再监控环境的性能。如果您更改调度器的数量,则可以随时将环境扩缩回原始调度器的数量。

如需详细了解如何配置多个调度器,请参阅 Airflow 文档

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > 工作负载配置项中, 点击修改

  5. 资源 > 调度器数量项中, 点击修改

  6. 调度器配置窗格的 调度器数量字段中,指定用于 您的环境

  7. 点击保存

gcloud

您可以使用以下 Airflow 调度器参数:

  • --scheduler-count:您的环境中的调度器数量。

运行以下 Google Cloud CLI 命令:

gcloud composer environments update ENVIRONMENT_NAME \
  --location LOCATION \
  --scheduler-count SCHEDULER_COUNT

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。

示例:

gcloud composer environments update example-environment \
  --location us-central1 \
  --scheduler-count 2

API

  1. 构建 environments.patch API 请求。

  2. 在此请求中:

    1. 在参数 updateMask 中,指定 config.workloadsConfig.schedulerCount 掩码。

    2. 在请求正文中,为您的环境指定调度器数量。

"config": {
  "workloadsConfig": {
    "scheduler": {
      "count": SCHEDULER_COUNT
    }
  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。

  • SCHEDULER_COUNT:调度器数量。

示例:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.scheduler

"config": {
  "workloadsConfig": {
    "scheduler": {
      "count": 2
    }
  }
}

Terraform

workloads_config.scheduler 代码块中的以下字段用于控制 Airflow 调度器参数。每个调度器使用指定数量的资源。

  • scheduler.count:您的环境中的调度器数量。

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "ENVIRONMENT_NAME"
  region = "LOCATION"

  config {

    workloads_config {
      scheduler {
        count = SCHEDULER_COUNT
      }
    }

  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。

  • SCHEDULER_COUNT:调度器数量。

示例:

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "example-environment"
  region = "us-central1"

  config {

    workloads_config {
      scheduler {
        
        count = 2
      }
    }

  }
}

调整触发器参数

您可以将触发器数量设置为零,但您的环境中至少需要有一个触发器实例(在高度弹性环境中至少需要两个),才能在 DAG 中使用可延期运算符

根据您的环境 弹性模式 触发器数量有不同的可能配置:

  • 标准弹性:您最多可以运行 10 触发器。
  • 高弹性:至少 2 个触发器,最多 10 个。

即使触发器数量设置为零,触发器 Pod 定义也会 在环境的集群中创建并可见,但没有实际的触发器 工作负载

您还可以指定环境中 Airflow 触发器使用的 CPU 数量、内存和磁盘空间大小。通过这种方式,您可以提高 以及使用多集群虚拟机提供的 触发器。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > 工作负载配置项中,点击修改

  5. 工作负载配置窗格中,调整 Airflow 触发器的参数:

    1. 触发器部分的触发器数量字段中,执行以下操作: 输入您环境中的触发器数量。

      如果您为环境设置了至少一个触发器,也请使用 CPUMemory 字段以配置资源分配 。

    2. CPU内存中,指定 Airflow 触发器的 CPU、内存和存储空间。每个触发器 使用指定数量的资源。

  6. 点击保存

gcloud

您可以使用以下 Airflow 触发器参数:

  • --triggerer-count:环境中的触发器数量。

    • 对于标准弹性环境,请使用介于 010
    • 对于高弹性环境,请使用 0, 或介于 210
  • --triggerer-cpu:Airflow 触发器的 CPU 数量。

  • --triggerer-memory:Airflow 的内存量 触发器。

运行以下 Google Cloud CLI 命令:

gcloud composer environments update ENVIRONMENT_NAME \
  --location LOCATION \
  --triggerer-count TRIGGERER_COUNT \
  --triggerer-cpu TRIGGERER_CPU \
  --triggerer-memory TRIGGERER_MEMORY

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • TRIGGERER_COUNT:触发器的数量。
  • TRIGGERER_CPU:触发器的 CPU 数量,以 vCPU 为单位。
  • TRIGGERER_MEMORY:触发器的内存量。

示例:

  • 扩容为四个触发器实例:
  gcloud composer environments update example-environment \
    --location us-central1 \
    --triggerer-count 4 \
    --triggerer-cpu 1 \
    --triggerer-memory 1
  ```

- Disable triggerers by setting triggerer count to `0`. This operation
  doesn't require specifying CPU or memory for the triggerers.

```bash
  gcloud composer environments update example-environment \
    --location us-central1 \
    --triggerer-count 0
  ```

API

  1. updateMask 查询参数中,指定 config.workloadsConfig.triggerer 掩码。

  2. 在请求正文中,为触发器指定所有三个参数。

"config": {
  "workloadsConfig": {
    "triggerer": {
      "count": TRIGGERER_COUNT,
      "cpu": TRIGGERER_CPU,
      "memoryGb": TRIGGERER_MEMORY
    }
  }
}

替换以下内容:

  • TRIGGERER_COUNT:触发器的数量。

    • 对于标准弹性环境,请使用介于 010
    • 对于高度弹性环境,请使用 0,或介于 210 之间的值。
  • TRIGGERER_CPU:触发器的 CPU 数量(以 vCPU 为单位)。

  • TRIGGERER_MEMORY:触发器的内存量。

示例:

  • 将触发器计数设置为 0 以停用触发器。此操作 不要求为触发器指定 CPU 或内存。
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.triggerer
"config": {
  "workloadsConfig": {
    "triggerer": {
      "count": 0
    }
  }
}
  • 扩容为四个触发器实例:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.triggerer
"config": {
  "workloadsConfig": {
    "triggerer": {
      "count": 4,
      "cpu": 1,
      "memoryGb": 1
    }
  }
}

Terraform

workloads_config.triggerer 块中的以下字段用于控制 Airflow 触发器参数。每个触发器都会使用 资源。

  • triggerer.count:您的环境中的触发器数量。

    • 对于标准弹性环境,请使用介于 010
    • 对于高弹性环境,请使用 0, 或介于 210
  • triggerer.cpu:Airflow 触发器的 CPU 数量。

  • triggerer.memory_gb:Airflow 触发器的内存量。

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "ENVIRONMENT_NAME"
  region = "LOCATION"

  config {

    workloads_config {
      triggerer {
        count = TRIGGERER_COUNT
        cpu = TRIGGERER_CPU
        memory_gb = TRIGGERER_MEMORY
      }
    }

  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • TRIGGERER_COUNT:触发器的数量。
  • TRIGGERER_CPU:触发器的 CPU 数量(以 vCPU 为单位)。
  • TRIGGERER_MEMORY:触发器的内存量(以 GB 为单位)。

示例:

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "example-environment"
  region = "us-central1"

  config {

    workloads_config {
      triggerer {
        count = 1
        cpu = 0.5
        memory_gb = 0.5
      }
    }

  }
}

调整 Web 服务器参数

您可以指定环境中 Airflow Web 服务器所使用的 CPU 数量、内存和磁盘空间大小。这样,您就可以扩缩 Airflow 界面的性能,例如,以满足来自大量用户或大量受管 DAG 的需求。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > 工作负载配置项中,点击修改

  5. 工作负载配置窗格中,调整 网络服务器在 CPU内存存储空间字段中,指定网络服务器的 CPU、内存和存储空间量。

  6. 点击保存

gcloud

您可以使用以下 Airflow Web 服务器参数:

  • --web-server-cpu:Airflow Web 服务器的 CPU 数量。
  • --web-server-memory:Airflow Web 服务器的内存量。
  • --web-server-storage:Airflow 的磁盘空间量 网络服务器

运行以下 Google Cloud CLI 命令:

gcloud composer environments update ENVIRONMENT_NAME \
  --location LOCATION \
  --web-server-cpu WEB_SERVER_CPU \
  --web-server-memory WEB_SERVER_MEMORY \
  --web-server-storage WEB_SERVER_STORAGE

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • WEB_SERVER_CPU:Web 服务器的 CPU 数量(以 vCPU 为单位)。
  • WEB_SERVER_MEMORY:Web 服务器的内存量。
  • WEB_SERVER_STORAGE:Web 服务器的内存量。

例如:

gcloud composer environments update example-environment \
  --location us-central1 \
  --web-server-cpu 1 \
  --web-server-memory 2.5 \
  --web-server-storage 2

API

  1. 构建 environments.patch API 请求。

  2. 在此请求中:

    1. updateMask 参数中,指定 config.workloadsConfig.webServer 掩码以更新所有 Web 服务器 参数。您还可以通过以下方式更新各个 Web 服务器参数: 为这些参数指定掩码: config.workloadsConfig.webServer.cpu, config.workloadsConfig.webServer.memoryGb, config.workloadsConfig.webServer.storageGb

    2. 在请求正文中,指定新的网站服务器参数。

"config": {
  "workloadsConfig": {
    "webServer": {
      "cpu": WEB_SERVER_CPU,
      "memoryGb": WEB_SERVER_MEMORY,
      "storageGb": WEB_SERVER_STORAGE
    }
  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • WEB_SERVER_CPU:Web 服务器的 CPU 数量(以 vCPU 为单位)。
  • WEB_SERVER_MEMORY:Web 服务器的内存量,以 GB 为单位。
  • WEB_SERVER_STORAGE:Web 服务器的磁盘大小,以 GB 为单位。

示例:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.webServer.cpu,
// config.workloadsConfig.webServer.memoryGb,
// config.workloadsConfig.webServer.storageGb

"config": {
  "workloadsConfig": {
    "webServer": {
      "cpu": 0.5,
      "memoryGb": 2.5,
      "storageGb": 2
    }
  }
}

Terraform

workloads_config.web_server 块中的以下字段用于控制 Web 服务器参数。

  • web_server.cpu:Web 服务器的 CPU 数量。
  • web_server.memory_gb:Web 服务器的内存量。
  • web_server.storage_gb:Web 服务器的磁盘空间。
resource "google_composer_environment" "example" {
  provider = google-beta
  name = "ENVIRONMENT_NAME"
  region = "LOCATION"

  config {

    workloads_config {
      web_server {
        cpu = WEB_SERVER_CPU
        memory_gb = WEB_SERVER_MEMORY
        storage_gb = WEB_SERVER_STORAGE
      }
    }

  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • WEB_SERVER_CPU:Web 服务器的 CPU 数量(以 vCPU 为单位)。
  • WEB_SERVER_MEMORY:Web 服务器的内存量,以 GB 为单位。
  • WEB_SERVER_STORAGE:Web 服务器的磁盘大小,以 GB 为单位。

示例:

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "example-environment"
  region = "us-central1"

  config {

    workloads_config {
      web_server {
        cpu = 0.5
        memory_gb = 1.875
        storage_gb = 1
      }
    }

  }
}

调整环境大小

环境大小决定了受管理设备的性能参数 Cloud Composer 基础架构,例如包含 Airflow 数据库。

如果要运行大量项目,请考虑选择更大的环境大小。 DAG 和任务的组合。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > 工作负载配置项中,点击修改

  5. 资源 > 核心基础架构项中,点击修改

  6. 核心基础架构窗格中,在环境大小字段中,指定环境大小。

  7. 点击保存

gcloud

参数 --environment-size 可用于控制环境大小:

gcloud composer environments update ENVIRONMENT_NAME \
    --location LOCATION \
    --environment-size ENVIRONMENT_SIZE

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • ENVIRONMENT_SIZEsmallmediumlarge

示例:

gcloud composer environments update example-environment \
    --location us-central1 \
    --environment-size medium

API

  1. 创建 environments.patch API 请求。

  2. 在此请求中:

    1. 在参数 updateMask 中,指定 config.environmentSize 掩码。

    2. 在请求正文中,指定环境大小。

  "config": {
    "environmentSize": "ENVIRONMENT_SIZE"
  }

替换以下内容:

  • ENVIRONMENT_SIZE:环境大小 ENVIRONMENT_SIZE_SMALLENVIRONMENT_SIZE_MEDIUMENVIRONMENT_SIZE_LARGE

示例:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.environmentSize

"config": {
  "environmentSize": "ENVIRONMENT_SIZE_MEDIUM"
}

Terraform

config 块中的 environment_size 字段控制环境大小:

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "ENVIRONMENT_NAME"
  region = "LOCATION"

  config {

    environment_size = "ENVIRONMENT_SIZE"

  }
}

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • ENVIRONMENT_SIZE:环境大小 ENVIRONMENT_SIZE_SMALLENVIRONMENT_SIZE_MEDIUMENVIRONMENT_SIZE_LARGE

示例:

resource "google_composer_environment" "example" {
  provider = google-beta
  name = "example-environment"
  region = "us-central1"

  config {

    environment_size = "ENVIRONMENT_SIZE_SMALL"

    }
  }
}

调整节点数量

您可以更改环境中的节点数。

此数字与您环境中的 Airflow 工作器数量相对应。 除了运行 Airflow 工作器之外,您的环境节点还运行 Airflow 调度器和其他环境组件。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 工作器节点数 > 节点数项中,点击修改

  5. 工作器节点配置窗格的节点数字段中, 指定您环境中的节点数量。

  6. 点击保存

gcloud

参数 --node-count 可用于控制环境中的节点数:

gcloud composer environments update ENVIRONMENT_NAME \
    --location LOCATION \
    --zone NODE_ZONE \
    --node-count NODE_COUNT

替换以下内容:

  • ENVIRONMENT_NAME:环境的名称。
  • LOCATION:环境所在的区域。
  • NODE_COUNT:节点数量。节点数下限为 3
  • NODE_ZONE:您的环境虚拟机的 Compute Engine 区域。

示例:

gcloud composer environments update example-environment \
    --location us-central1 \
    --zone us-central1-a \
    --node-count 6

API

  1. 创建 environments.patch API 请求。

  2. 在此请求中:

    1. 在参数 updateMask 中,指定 config.nodeCount 掩码。

    2. 在请求正文中,为您的环境指定节点数。

  "config": {
    "nodeCount": NODE_COUNT
  }

替换以下内容:

  • NODE_COUNT:节点数。节点数下限为 3

例如:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.nodeCount

"config": {
  "nodeCount": 6
}

Terraform

node_config 块中的 node_count 字段指定 您的环境中的节点。

resource "google_composer_environment" "example" {

  config {
    node_config {
      node_count = NODE_COUNT
    }
}

替换以下内容:

  • NODE_COUNT:节点数量。

示例:

resource "google_composer_environment" "example" {
  name = "example-environment"
  region = "us-central1"

  config {

    node_config {
      node_count = 4
    }

}

调整 Cloud SQL 实例的机器类型

您可以更改用来存储 您的环境的 Airflow 数据库。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > Cloud SQL 机器类型项中,点击修改

  5. Cloud SQL 配置窗格中,在 Cloud SQL 机器类型下拉列表中,选择环境的 Cloud SQL 实例的机器类型。

  6. 点击保存

gcloud

参数 --cloud-sql-machine-type 可用于控制环境中 Cloud SQL 实例的机器类型。

运行以下 Google Cloud CLI 命令:

gcloud composer environments update ENVIRONMENT_NAME \
  --location LOCATION \
  --cloud-sql-machine-type SQL_MACHINE_TYPE

替换以下内容:

示例:

gcloud composer environments update example-environment \
  --location us-central1 \
  --cloud-sql-machine-type db-n1-standard-2

API

  1. 创建 environments.patch API 请求。

  2. 在此请求中:

    1. updateMask 参数中,指定 config.databaseConfig.machineType 个蒙版。

    2. 在请求正文中,指定 Cloud SQL 实例的机器类型。

{
  "config": {
    "databaseConfig": {
      "machineType": "SQL_MACHINE_TYPE"
    }
  }
}

替换以下内容:

示例:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.databaseConfig.machineType

{
  "config": {
    "databaseConfig": {
      "machineType": "db-n1-standard-2"
    }
  }
}

Terraform

database_config 块中的 machine_type 字段指定了 Cloud SQL 实例的机器类型。

resource "google_composer_environment" "example" {

  config {
    database_config {
      machine_type = "SQL_MACHINE_TYPE"
    }
  }
}

替换以下内容:

示例:

resource "google_composer_environment" "example" {
  name = "example-environment"
  region = "us-central1"

  config {
    database_config {
      machine_type = "db-n1-standard-2"
    }
}

调整网络服务器机器类型

您可以更改环境的 Airflow 网络服务器的机器类型。

控制台

  1. 在 Google Cloud 控制台中,前往环境页面。

    转到“环境”

  2. 在环境列表中,点击您的环境名称。环境详情页面会打开。

  3. 转到环境配置标签页。

  4. 资源 > Web 服务器机器类型项目中, 点击修改

  5. Web 服务器配置窗格的 Web 服务器机器类型下拉列表中,选择 Airflow Web 服务器

  6. 点击保存

gcloud

--web-server-machine-type 参数用于控制环境中的 Airflow 网络服务器实例的机器类型。

运行以下 Google Cloud CLI 命令:

gcloud composer environments update ENVIRONMENT_NAME \
  --location LOCATION \
  --web-server-machine-type WS_MACHINE_TYPE

替换以下内容:

示例:

gcloud composer environments update example-environment \
  --location us-central1 \
  --web-server-machine-type composer-n1-webserver-2

API

  1. 创建 environments.patch API 请求。

  2. 在此请求中:

    1. 在参数 updateMask 中,指定 config.webServerConfig.machineType 掩码。

    2. 在请求正文中,指定网络服务器的机器类型。

{
  "config": {
    "webServerConfig": {
      "machineType": "WS_MACHINE_TYPE"
    }
  }
}

替换以下内容:

示例:

// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.webServerConfig.machineType

{
  "config": {
    "webServerConfig": {
      "machineType": "composer-n1-webserver-2"
    }
  }
}

Terraform

web_server_config 代码块中的 machine_type 字段指定 Airflow Web 服务器实例的机器类型

resource "google_composer_environment" "example" {

  config {
    web_server_config {
      machine_type = "WS_MACHINE_TYPE"
    }
  }
}

替换以下内容:

示例:

resource "google_composer_environment" "example" {
  name = "example-environment"
  region = "us-central1"

  config {
    web_server_config {
      machine_type = "composer-n1-webserver-2"
    }
}

后续步骤