Tabellendaten im Arrow-Datenformat herunterladen

Tabellendaten mit dem Datenformat „Pfeil“ herunterladen und die Daten in Zeilenobjekte deserialisieren

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Java in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.


import com.google.api.gax.rpc.ServerStream;
import com.google.cloud.bigquery.storage.v1.ArrowRecordBatch;
import com.google.cloud.bigquery.storage.v1.ArrowSchema;
import com.google.cloud.bigquery.storage.v1.BigQueryReadClient;
import com.google.cloud.bigquery.storage.v1.CreateReadSessionRequest;
import com.google.cloud.bigquery.storage.v1.DataFormat;
import com.google.cloud.bigquery.storage.v1.ReadRowsRequest;
import com.google.cloud.bigquery.storage.v1.ReadRowsResponse;
import com.google.cloud.bigquery.storage.v1.ReadSession;
import com.google.cloud.bigquery.storage.v1.ReadSession.TableModifiers;
import com.google.cloud.bigquery.storage.v1.ReadSession.TableReadOptions;
import com.google.common.base.Preconditions;
import com.google.protobuf.Timestamp;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.FieldVector;
import org.apache.arrow.vector.VectorLoader;
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.ipc.ReadChannel;
import org.apache.arrow.vector.ipc.message.MessageSerializer;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.Schema;
import org.apache.arrow.vector.util.ByteArrayReadableSeekableByteChannel;

public class StorageArrowSample {

  /*
   * SimpleRowReader handles deserialization of the Apache Arrow-encoded row batches transmitted
   * from the storage API using a generic datum decoder.
   */
  private static class SimpleRowReader implements AutoCloseable {

    BufferAllocator allocator = new RootAllocator(Long.MAX_VALUE);

    // Decoder object will be reused to avoid re-allocation and too much garbage collection.
    private final VectorSchemaRoot root;
    private final VectorLoader loader;

    public SimpleRowReader(ArrowSchema arrowSchema) throws IOException {
      Schema schema =
          MessageSerializer.deserializeSchema(
              new ReadChannel(
                  new ByteArrayReadableSeekableByteChannel(
                      arrowSchema.getSerializedSchema().toByteArray())));
      Preconditions.checkNotNull(schema);
      List<FieldVector> vectors = new ArrayList<>();
      for (Field field : schema.getFields()) {
        vectors.add(field.createVector(allocator));
      }
      root = new VectorSchemaRoot(vectors);
      loader = new VectorLoader(root);
    }

    /**
     * Sample method for processing Arrow data which only validates decoding.
     *
     * @param batch object returned from the ReadRowsResponse.
     */
    public void processRows(ArrowRecordBatch batch) throws IOException {
      org.apache.arrow.vector.ipc.message.ArrowRecordBatch deserializedBatch =
          MessageSerializer.deserializeRecordBatch(
              new ReadChannel(
                  new ByteArrayReadableSeekableByteChannel(
                      batch.getSerializedRecordBatch().toByteArray())),
              allocator);

      loader.load(deserializedBatch);
      // Release buffers from batch (they are still held in the vectors in root).
      deserializedBatch.close();
      System.out.println(root.contentToTSVString());
      // Release buffers from vectors in root.
      root.clear();
    }

    @Override
    public void close() {
      root.close();
      allocator.close();
    }
  }

  public static void main(String... args) throws Exception {
    // Sets your Google Cloud Platform project ID.
    // String projectId = "YOUR_PROJECT_ID";
    String projectId = args[0];
    Integer snapshotMillis = null;
    if (args.length > 1) {
      snapshotMillis = Integer.parseInt(args[1]);
    }

    try (BigQueryReadClient client = BigQueryReadClient.create()) {
      String parent = String.format("projects/%s", projectId);

      // This example uses baby name data from the public datasets.
      String srcTable =
          String.format(
              "projects/%s/datasets/%s/tables/%s",
              "bigquery-public-data", "usa_names", "usa_1910_current");

      // We specify the columns to be projected by adding them to the selected fields,
      // and set a simple filter to restrict which rows are transmitted.
      TableReadOptions options =
          TableReadOptions.newBuilder()
              .addSelectedFields("name")
              .addSelectedFields("number")
              .addSelectedFields("state")
              .setRowRestriction("state = \"WA\"")
              .build();

      // Start specifying the read session we want created.
      ReadSession.Builder sessionBuilder =
          ReadSession.newBuilder()
              .setTable(srcTable)
              // This API can also deliver data serialized in Apache Avro format.
              // This example leverages Apache Arrow.
              .setDataFormat(DataFormat.ARROW)
              .setReadOptions(options);

      // Optionally specify the snapshot time.  When unspecified, snapshot time is "now".
      if (snapshotMillis != null) {
        Timestamp t =
            Timestamp.newBuilder()
                .setSeconds(snapshotMillis / 1000)
                .setNanos((int) ((snapshotMillis % 1000) * 1000000))
                .build();
        TableModifiers modifiers = TableModifiers.newBuilder().setSnapshotTime(t).build();
        sessionBuilder.setTableModifiers(modifiers);
      }

      // Begin building the session creation request.
      CreateReadSessionRequest.Builder builder =
          CreateReadSessionRequest.newBuilder()
              .setParent(parent)
              .setReadSession(sessionBuilder)
              .setMaxStreamCount(1);

      ReadSession session = client.createReadSession(builder.build());
      // Setup a simple reader and start a read session.
      try (SimpleRowReader reader = new SimpleRowReader(session.getArrowSchema())) {

        // Assert that there are streams available in the session.  An empty table may not have
        // data available.  If no sessions are available for an anonymous (cached) table, consider
        // writing results of a query to a named table rather than consuming cached results
        // directly.
        Preconditions.checkState(session.getStreamsCount() > 0);

        // Use the first stream to perform reading.
        String streamName = session.getStreams(0).getName();

        ReadRowsRequest readRowsRequest =
            ReadRowsRequest.newBuilder().setReadStream(streamName).build();

        // Process each block of rows as they arrive and decode using our simple row reader.
        ServerStream<ReadRowsResponse> stream = client.readRowsCallable().call(readRowsRequest);
        for (ReadRowsResponse response : stream) {
          Preconditions.checkState(response.hasArrowRecordBatch());
          reader.processRows(response.getArrowRecordBatch());
        }
      }
    }
  }
}

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.