Geplante Abfrage mit einem Dienstkonto erstellen

Planen Sie eine Abfrage, die alle 24 Stunden mit einer Zieltabellen-ID basierend auf dem Ausführungsdatum ausgeführt wird. Die Abfrage wird als Dienstkontonutzer ausgeführt.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Java in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.api.gax.rpc.ApiException;
import com.google.cloud.bigquery.datatransfer.v1.CreateTransferConfigRequest;
import com.google.cloud.bigquery.datatransfer.v1.DataTransferServiceClient;
import com.google.cloud.bigquery.datatransfer.v1.ProjectName;
import com.google.cloud.bigquery.datatransfer.v1.TransferConfig;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

// Sample to create a scheduled query with service account
public class CreateScheduledQueryWithServiceAccount {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    final String projectId = "MY_PROJECT_ID";
    final String datasetId = "MY_DATASET_ID";
    final String serviceAccount = "MY_SERVICE_ACCOUNT";
    final String query =
        "SELECT CURRENT_TIMESTAMP() as current_time, @run_time as intended_run_time, "
            + "@run_date as intended_run_date, 17 as some_integer";
    Map<String, Value> params = new HashMap<>();
    params.put("query", Value.newBuilder().setStringValue(query).build());
    params.put(
        "destination_table_name_template",
        Value.newBuilder().setStringValue("my_destination_table_{run_date}").build());
    params.put("write_disposition", Value.newBuilder().setStringValue("WRITE_TRUNCATE").build());
    params.put("partitioning_field", Value.newBuilder().build());
    TransferConfig transferConfig =
        TransferConfig.newBuilder()
            .setDestinationDatasetId(datasetId)
            .setDisplayName("Your Scheduled Query Name")
            .setDataSourceId("scheduled_query")
            .setParams(Struct.newBuilder().putAllFields(params).build())
            .setSchedule("every 24 hours")
            .build();
    createScheduledQueryWithServiceAccount(projectId, transferConfig, serviceAccount);
  }

  public static void createScheduledQueryWithServiceAccount(
      String projectId, TransferConfig transferConfig, String serviceAccount) throws IOException {
    try (DataTransferServiceClient dataTransferServiceClient = DataTransferServiceClient.create()) {
      ProjectName parent = ProjectName.of(projectId);
      CreateTransferConfigRequest request =
          CreateTransferConfigRequest.newBuilder()
              .setParent(parent.toString())
              .setTransferConfig(transferConfig)
              .setServiceAccountName(serviceAccount)
              .build();
      TransferConfig config = dataTransferServiceClient.createTransferConfig(request);
      System.out.println(
          "\nScheduled query with service account created successfully :" + config.getName());
    } catch (ApiException ex) {
      System.out.print("\nScheduled query with service account was not created." + ex.toString());
    }
  }
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

from google.cloud import bigquery_datatransfer

transfer_client = bigquery_datatransfer.DataTransferServiceClient()

# The project where the query job runs is the same as the project
# containing the destination dataset.
project_id = "your-project-id"
dataset_id = "your_dataset_id"

# This service account will be used to execute the scheduled queries. Omit
# this request parameter to run the query as the user with the credentials
# associated with this client.
service_account_name = "abcdef-test-sa@abcdef-test.iam.gserviceaccount.com"

# Use standard SQL syntax for the query.
query_string = """
SELECT
  CURRENT_TIMESTAMP() as current_time,
  @run_time as intended_run_time,
  @run_date as intended_run_date,
  17 as some_integer
"""

parent = transfer_client.common_project_path(project_id)

transfer_config = bigquery_datatransfer.TransferConfig(
    destination_dataset_id=dataset_id,
    display_name="Your Scheduled Query Name",
    data_source_id="scheduled_query",
    params={
        "query": query_string,
        "destination_table_name_template": "your_table_{run_date}",
        "write_disposition": "WRITE_TRUNCATE",
        "partitioning_field": "",
    },
    schedule="every 24 hours",
)

transfer_config = transfer_client.create_transfer_config(
    bigquery_datatransfer.CreateTransferConfigRequest(
        parent=parent,
        transfer_config=transfer_config,
        service_account_name=service_account_name,
    )
)

print("Created scheduled query '{}'".format(transfer_config.name))

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.