Streaming-Insert-Anweisung

Fügt einfache Zeilen über die Streaming API (insertAll) in eine Tabelle ein.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von C# in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery C# API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.


using Google.Cloud.BigQuery.V2;

public class BigQueryTableInsertRows
{
    public void TableInsertRows(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id",
        string tableId = "your_table_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        BigQueryInsertRow[] rows = new BigQueryInsertRow[]
        {
            // The insert ID is optional, but can avoid duplicate data
            // when retrying inserts.
            new BigQueryInsertRow(insertId: "row1") {
                { "name", "Washington" },
                { "post_abbr", "WA" }
            },
            new BigQueryInsertRow(insertId: "row2") {
                { "name", "Colorado" },
                { "post_abbr", "CO" }
            }
        };
        client.InsertRows(datasetId, tableId, rows);
    }
}

Go

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Go-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// Item represents a row item.
type Item struct {
	Name string
	Age  int
}

// Save implements the ValueSaver interface.
// This example disables best-effort de-duplication, which allows for higher throughput.
func (i *Item) Save() (map[string]bigquery.Value, string, error) {
	return map[string]bigquery.Value{
		"full_name": i.Name,
		"age":       i.Age,
	}, bigquery.NoDedupeID, nil
}

// insertRows demonstrates inserting data into a table using the streaming insert mechanism.
func insertRows(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	inserter := client.Dataset(datasetID).Table(tableID).Inserter()
	items := []*Item{
		// Item implements the ValueSaver interface.
		{Name: "Phred Phlyntstone", Age: 32},
		{Name: "Wylma Phlyntstone", Age: 29},
	}
	if err := inserter.Put(ctx, items); err != nil {
		return err
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryError;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.InsertAllRequest;
import com.google.cloud.bigquery.InsertAllResponse;
import com.google.cloud.bigquery.TableId;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

// Sample to inserting rows into a table without running a load job.
public class TableInsertRows {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    // Create a row to insert
    Map<String, Object> rowContent = new HashMap<>();
    rowContent.put("booleanField", true);
    rowContent.put("numericField", "3.14");
    // TODO(developer): Replace the row id with a unique value for each row.
    String rowId = "ROW_ID";
    tableInsertRows(datasetName, tableName, rowId, rowContent);
  }

  public static void tableInsertRows(
      String datasetName, String tableName, String rowId, Map<String, Object> rowContent) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Get table
      TableId tableId = TableId.of(datasetName, tableName);

      // Inserts rowContent into datasetName:tableId.
      InsertAllResponse response =
          bigquery.insertAll(
              InsertAllRequest.newBuilder(tableId)
                  // More rows can be added in the same RPC by invoking .addRow() on the builder.
                  // You can omit the unique row ids to disable de-duplication.
                  .addRow(rowId, rowContent)
                  .build());

      if (response.hasErrors()) {
        // If any of the insertions failed, this lets you inspect the errors
        for (Map.Entry<Long, List<BigQueryError>> entry : response.getInsertErrors().entrySet()) {
          System.out.println("Response error: \n" + entry.getValue());
        }
      }
      System.out.println("Rows successfully inserted into table");
    } catch (BigQueryException e) {
      System.out.println("Insert operation not performed \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function insertRowsAsStream() {
  // Inserts the JSON objects into my_dataset:my_table.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';
  const rows = [
    {name: 'Tom', age: 30},
    {name: 'Jane', age: 32},
  ];

  // Insert data into a table
  await bigquery.dataset(datasetId).table(tableId).insert(rows);
  console.log(`Inserted ${rows.length} rows`);
}

PHP

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der PHP-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery PHP API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

use Google\Cloud\BigQuery\BigQueryClient;

/**
 * Stream data into bigquery
 *
 * @param string $projectId The project Id of your Google Cloud Project.
 * @param string $datasetId The BigQuery dataset ID.
 * @param string $tableId The BigQuery table ID.
 * @param string $data Json encoded data For eg,
 *    $data = json_encode([
 *       "field1" => "value1",
 *       "field2" => "value2",
 *    ]);
 */
function stream_row(
    string $projectId,
    string $datasetId,
    string $tableId,
    string $data
): void {
    // instantiate the bigquery table service
    $bigQuery = new BigQueryClient([
      'projectId' => $projectId,
    ]);
    $dataset = $bigQuery->dataset($datasetId);
    $table = $dataset->table($tableId);

    $data = json_decode($data, true);
    $insertResponse = $table->insertRows([
      ['data' => $data],
      // additional rows can go here
    ]);
    if ($insertResponse->isSuccessful()) {
        print('Data streamed into BigQuery successfully' . PHP_EOL);
    } else {
        foreach ($insertResponse->failedRows() as $row) {
            foreach ($row['errors'] as $error) {
                printf('%s: %s' . PHP_EOL, $error['reason'], $error['message']);
            }
        }
    }
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of table to append to.
# table_id = "your-project.your_dataset.your_table"

rows_to_insert = [
    {"full_name": "Phred Phlyntstone", "age": 32},
    {"full_name": "Wylma Phlyntstone", "age": 29},
]

errors = client.insert_rows_json(table_id, rows_to_insert)  # Make an API request.
if errors == []:
    print("New rows have been added.")
else:
    print("Encountered errors while inserting rows: {}".format(errors))

Ruby

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Ruby-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Ruby API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

require "google/cloud/bigquery"

def table_insert_rows dataset_id = "your_dataset_id", table_id = "your_table_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  table    = dataset.table table_id

  row_data = [
    { name: "Alice", value: 5  },
    { name: "Bob",   value: 10 }
  ]
  response = table.insert row_data

  if response.success?
    puts "Inserted rows successfully"
  else
    puts "Failed to insert #{response.error_rows.count} rows"
  end
end

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.