Memuat file JSON

Memuat file JSON dari Cloud Storage menggunakan skema eksplisit.

Jelajahi lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery C# API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsJson
{
    public void LoadTableGcsJson(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
        var dataset = client.GetDataset(datasetId);
        var schema = new TableSchemaBuilder {
            { "name", BigQueryDbType.String },
            { "post_abbr", BigQueryDbType.String }
        }.Build();
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.NewlineDelimitedJson
        };
        // Create and run job
        BigQueryJob loadJob = client.CreateLoadJob(
            sourceUri: gcsURI, destination: destinationTableRef,
            schema: schema, options: jobOptions);
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Go API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importJSONExplicitSchema demonstrates loading newline-delimited JSON data from Cloud Storage
// into a BigQuery table and providing an explicit schema for the data.
func importJSONExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.json")
	gcsRef.SourceFormat = bigquery.JSON
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
	}
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %w", status.Err())
	}
	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Java API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load JSON data from Cloud Storage into a new BigQuery table
public class LoadJsonFromGcs {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadJsonFromGcs(datasetName, tableName, sourceUri, schema);
  }

  public static void loadJsonFromGcs(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.json())
              .setSchema(schema)
              .build();

      // Load data from a GCS JSON file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Json from GCS successfully loaded in a table");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Node.js API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the json file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.json
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.json';

async function loadJSONFromGCS() {
  // Imports a GCS file into a table with manually defined schema.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'NEWLINE_DELIMITED_JSON',
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
}

PHP

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan PHP di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery PHP API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

use Google\Cloud\BigQuery\BigQueryClient;

/**
 * Import data from storage json.
 *
 * @param string $projectId The project Id of your Google Cloud Project.
 * @param string $datasetId The BigQuery dataset ID.
 * @param string $tableId The BigQuery table ID.
 */
function import_from_storage_json(
    string $projectId,
    string $datasetId,
    string $tableId = 'us_states'
): void {
    // instantiate the bigquery table service
    $bigQuery = new BigQueryClient([
      'projectId' => $projectId,
    ]);
    $dataset = $bigQuery->dataset($datasetId);
    $table = $dataset->table($tableId);

    // create the import job
    $gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.json';
    $schema = [
      'fields' => [
        ['name' => 'name', 'type' => 'string'],
        ['name' => 'post_abbr', 'type' => 'string']
        ]
      ];
    $loadConfig = $table->loadFromStorage($gcsUri)->schema($schema)->sourceFormat('NEWLINE_DELIMITED_JSON');
    $job = $table->runJob($loadConfig);

    // check if the job is complete
    $job->reload();
    if (!$job->isComplete()) {
        throw new \Exception('Job has not yet completed', 500);
    }
    // check if the job has errors
    if (isset($job->info()['status']['errorResult'])) {
        $error = $job->info()['status']['errorResult']['message'];
        printf('Error running job: %s' . PHP_EOL, $error);
    } else {
        print('Data imported successfully' . PHP_EOL);
    }
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Python API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON,
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.json"

load_job = client.load_table_from_uri(
    uri,
    table_id,
    location="US",  # Must match the destination dataset location.
    job_config=job_config,
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Ruby di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Ruby API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

require "google/cloud/bigquery"

def load_table_gcs_json dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.json"
  table_id = "us_states"

  load_job = dataset.load_job table_id, gcs_uri, format: "json" do |schema|
    schema.string "name"
    schema.string "post_abbr"
  end
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done! # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table table_id
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.