CSV-Datei zum Ersetzen einer Tabelle laden

CSV-Datei aus Cloud Storage laden und eine Tabelle ersetzen.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Go in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importCSVTruncate demonstrates loading data from CSV data in Cloud Storage and overwriting/truncating
// data in the existing table.
func importCSVTruncate(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.csv")
	gcsRef.SourceFormat = bigquery.CSV
	gcsRef.AutoDetect = true
	gcsRef.SkipLeadingRows = 1
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteTruncate

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %w", status.Err())
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.JobInfo.WriteDisposition;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.TableId;

// Sample to overwrite the BigQuery table data by loading a CSV file from GCS
public class LoadCsvFromGcsTruncate {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv";
    loadCsvFromGcsTruncate(datasetName, tableName, sourceUri);
  }

  public static void loadCsvFromGcsTruncate(String datasetName, String tableName, String sourceUri)
      throws Exception {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      LoadJobConfiguration configuration =
          LoadJobConfiguration.builder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.csv())
              // Set the write disposition to overwrite existing table data
              .setWriteDisposition(WriteDisposition.WRITE_TRUNCATE)
              .build();

      // For more information on Job see:
      // https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html
      // Load the table
      Job loadJob = bigquery.create(JobInfo.of(configuration));

      // Load data from a GCS parquet file into the table
      // Blocks until this load table job completes its execution, either failing or succeeding.
      Job completedJob = loadJob.waitFor();

      // Check for errors
      if (completedJob == null) {
        throw new Exception("Job not executed since it no longer exists.");
      } else if (completedJob.getStatus().getError() != null) {
        // You can also look at queryJob.getStatus().getExecutionErrors() for all
        // errors, not just the latest one.
        throw new Exception(
            "BigQuery was unable to load into the table due to an error: \n"
                + loadJob.getStatus().getError());
      }
      System.out.println("Table is successfully overwritten by CSV file loaded from GCS");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.csv';

async function loadCSVFromGCSTruncate() {
  /**
   * Imports a GCS file into a table and overwrites
   * table data if table already exists.
   */

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'CSV',
    skipLeadingRows: 1,
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    // Set the write disposition to overwrite existing table data.
    writeDisposition: 'WRITE_TRUNCATE',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
  console.log(
    `Write disposition used: ${job.configuration.load.writeDisposition}.`
  );
}

PHP

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der PHP-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery PHP API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

use Google\Cloud\BigQuery\BigQueryClient;

/**
 * Import data from storage csv with write truncate option.
 *
 * @param string $projectId The project Id of your Google Cloud Project.
 * @param string $datasetId The BigQuery dataset ID.
 * @param string $tableId The BigQuery table ID.
 */
function import_from_storage_csv_truncate(
    string $projectId,
    string $datasetId,
    string $tableId = 'us_states'
): void {
    // instantiate the bigquery table service
    $bigQuery = new BigQueryClient([
      'projectId' => $projectId,
    ]);
    $table = $bigQuery->dataset($datasetId)->table($tableId);

    // create the import job
    $gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.csv';
    $loadConfig = $table->loadFromStorage($gcsUri)->skipLeadingRows(1)->writeDisposition('WRITE_TRUNCATE');
    $job = $table->runJob($loadConfig);

    // check if the job is complete
    $job->reload();
    if (!$job->isComplete()) {
        throw new \Exception('Job has not yet completed', 500);
    }
    // check if the job has errors
    if (isset($job->info()['status']['errorResult'])) {
        $error = $job->info()['status']['errorResult']['message'];
        printf('Error running job: %s' . PHP_EOL, $error);
    } else {
        print('Data imported successfully' . PHP_EOL);
    }
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import io

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
)

body = io.BytesIO(b"Washington,WA")
client.load_table_from_file(body, table_id, job_config=job_config).result()
previous_rows = client.get_table(table_id).num_rows
assert previous_rows > 0

job_config = bigquery.LoadJobConfig(
    write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE,
    source_format=bigquery.SourceFormat.CSV,
    skip_leading_rows=1,
)

uri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv"
load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.