Modell abrufen

Modellressource für eine bestimmte Modell-ID abrufen

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Go in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// printModelInfo demonstrates fetching metadata about a BigQuery ML model and printing some of
// it to an io.Writer.
func printModelInfo(w io.Writer, projectID, datasetID, modelID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// modelID := "mymodel"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	meta, err := client.Dataset(datasetID).Model(modelID).Metadata(ctx)
	if err != nil {
		return fmt.Errorf("couldn't retrieve metadata: %w", err)
	}
	fmt.Fprintf(w, "Got model '%q' with friendly name '%q'\n", modelID, meta.Name)
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Model;
import com.google.cloud.bigquery.ModelId;

public class GetModel {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String modelName = "MY_MODEL_ID";
    getModel(datasetName, modelName);
  }

  public static void getModel(String datasetName, String modelName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      ModelId modelId = ModelId.of(datasetName, modelName);
      Model model = bigquery.getModel(modelId);
      System.out.println("Model: " + model.getDescription());

      System.out.println("Successfully retrieved model");
    } catch (BigQueryException e) {
      System.out.println("Cannot retrieve model \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function getModel() {
  // Retrieves model named "my_existing_model" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample
   */
  // const datasetId = "my_dataset";
  // const modelId = "my_existing_model";

  const dataset = bigquery.dataset(datasetId);
  const [model] = await dataset.model(modelId).get();

  console.log('Model:');
  console.log(model.metadata.modelReference);
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set model_id to the ID of the model to fetch.
# model_id = 'your-project.your_dataset.your_model'

model = client.get_model(model_id)  # Make an API request.

full_model_id = "{}.{}.{}".format(model.project, model.dataset_id, model.model_id)
friendly_name = model.friendly_name
print(
    "Got model '{}' with friendly_name '{}'.".format(full_model_id, friendly_name)
)

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.