使用 BigQuery DataFrames 创建聚类模型
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
使用 BigQuery DataFrames API 根据企鹅的长度和性别创建 k-means 聚类模型。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis content demonstrates creating a k-means clustering model using the BigQuery DataFrames API.\u003c/p\u003e\n"],["\u003cp\u003eThe model is trained on penguin data, specifically using culmen length and sex as features.\u003c/p\u003e\n"],["\u003cp\u003eThe example code showcases how to load data from BigQuery, create and fit the KMeans model, and then predict and score it.\u003c/p\u003e\n"],["\u003cp\u003eYou can find more detailed documentation on using BigQuery DataFrames, setting up authentication, and using the BigQuery Python API in the provided links.\u003c/p\u003e\n"]]],[],null,["# Create a clustering model with BigQuery DataFrames\n\nCreate a k-means clustering model on the lengths and sex of penguins using the BigQuery DataFrames API.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Use BigQuery DataFrames](/bigquery/docs/use-bigquery-dataframes)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[BigQuery quickstart using\nclient libraries](/bigquery/docs/quickstarts/quickstart-client-libraries).\n\n\nFor more information, see the\n[BigQuery Python API\nreference documentation](/python/docs/reference/bigquery/latest).\n\n\nTo authenticate to BigQuery, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for client libraries](/bigquery/docs/authentication#client-libs).\n\n from bigframes.ml.cluster import KMeans\n import bigframes.pandas as bpd\n\n # Load data from BigQuery\n query_or_table = \"bigquery-public-data.ml_datasets.penguins\"\n bq_df = bpd.read_gbq(query_or_table)\n\n # Create the KMeans model\n cluster_model = KMeans(n_clusters=10)\n cluster_model.fit(bq_df[\"culmen_length_mm\"], bq_df[\"sex\"])\n\n # Predict using the model\n result = cluster_model.predict(bq_df)\n # Score the model\n score = cluster_model.score(bq_df)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=bigquery)."]]