Créer un modèle de clustering avec BigQuery DataFrames

Créez un modèle de clustering en k-moyennes sur les longueurs et le genre des manchots à l'aide de l'API BigQuery DataFrames.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

from bigframes.ml.cluster import KMeans
import bigframes.pandas as bpd

# Load data from BigQuery
query_or_table = "bigquery-public-data.ml_datasets.penguins"
bq_df = bpd.read_gbq(query_or_table)

# Create the KMeans model
cluster_model = KMeans(n_clusters=10)
cluster_model.fit(bq_df["culmen_length_mm"], bq_df["sex"])

# Predict using the model
result = cluster_model.predict(bq_df)
# Score the model
score = cluster_model.score(bq_df)

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.