Créer une table partitionnée par plages d'entiers

Créez une table partitionnée par plages d'entiers dans un ensemble de données existant.

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code

Java

Avant d'essayer l'exemple ci-dessous, suivez la procédure de configuration pour Java décrite dans le guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery en langage Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.RangePartitioning;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create a range partitioned table
public class CreateRangePartitionedTable {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("integerField", StandardSQLTypeName.INT64),
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL),
            Field.of("dateField", StandardSQLTypeName.DATE));
    createRangePartitionedTable(datasetName, tableName, schema);
  }

  public static void createRangePartitionedTable(
      String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      // Note: The field must be a top- level, NULLABLE/REQUIRED field.
      // The only supported type is INTEGER/INT64
      RangePartitioning partitioning =
          RangePartitioning.newBuilder()
              .setField("integerField")
              .setRange(
                  RangePartitioning.Range.newBuilder()
                      .setStart(1L)
                      .setInterval(2L)
                      .setEnd(10L)
                      .build())
              .build();

      StandardTableDefinition tableDefinition =
          StandardTableDefinition.newBuilder()
              .setSchema(schema)
              .setRangePartitioning(partitioning)
              .build();
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Range partitioned table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Range partitioned table was not created. \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer l'exemple ci-dessous, suivez la procédure de configuration pour Node.js décrite dans le guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery en langage Node.js.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTableRangePartitioned() {
  // Creates a new integer range partitioned table named "my_table"
  // in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  const schema = [
    {name: 'fullName', type: 'STRING'},
    {name: 'city', type: 'STRING'},
    {name: 'zipcode', type: 'INTEGER'},
  ];

  // To use integer range partitioning, select a top-level REQUIRED or
  // NULLABLE column with INTEGER / INT64 data type. Values that are
  // outside of the range of the table will go into the UNPARTITIONED
  // partition. Null values will be in the NULL partition.
  const rangePartition = {
    field: 'zipcode',
    range: {
      start: 0,
      end: 100000,
      interval: 10,
    },
  };

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    rangePartitioning: rangePartition,
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created with integer range partitioning: `);
  console.log(table.metadata.rangePartitioning);
}

Python

Avant d'essayer l'exemple ci-dessous, suivez la procédure de configuration pour Python décrite dans le guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery Python.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING"),
    bigquery.SchemaField("city", "STRING"),
    bigquery.SchemaField("zipcode", "INTEGER"),
]

table = bigquery.Table(table_id, schema=schema)
table.range_partitioning = bigquery.RangePartitioning(
    # To use integer range partitioning, select a top-level REQUIRED /
    # NULLABLE column with INTEGER / INT64 data type.
    field="zipcode",
    range_=bigquery.PartitionRange(start=0, end=100000, interval=10),
)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.