Visualizzazione WRITE_API_TIMELINE
La visualizzazione INFORMATION_SCHEMA.WRITE_API_TIMELINE
contiene al minuto
statistiche aggregate di importazione dell'API BigQuery StorageWrite per il progetto attuale.
Puoi eseguire query sulle INFORMATION_SCHEMA
viste dell'API Scrivi
per recuperare informazioni storiche e in tempo reale sull'importazione dati
BigQuery che utilizza l'API BigQuery Storage Writer. Per ulteriori informazioni, consulta l'API BigQuery Storage Write.
Autorizzazione obbligatoria
Per eseguire query sulla visualizzazione INFORMATION_SCHEMA.WRITE_API_TIMELINE
, devi disporre dell'autorizzazione bigquery.tables.list
Identity and Access Management (IAM) per il progetto.
Ciascuno dei seguenti ruoli IAM predefiniti include l'autorizzazione obbligatoria:
roles/bigquery.user
roles/bigquery.dataViewer
roles/bigquery.dataEditor
roles/bigquery.dataOwner
roles/bigquery.metadataViewer
roles/bigquery.resourceAdmin
roles/bigquery.admin
Per ulteriori informazioni sulle autorizzazioni BigQuery, consulta Controllo dell'accesso con IAM.
Schema
Quando esegui query sulle viste dell'INFORMATION_SCHEMA
API BigQuery Storage Write, i risultati della query contengono informazioni storiche e in tempo reale sull'importazione dei dati in
BigQuery utilizzando l'API BigQuery Storage Write. Ogni riga nelle visualizzazioni seguenti rappresenta le statistiche per l'importazione in una tabella specifica, aggregate
un intervallo di un minuto a partire da start_timestamp
. Le statistiche sono raggruppate per tipo di stream e codice di errore, quindi ci sarà una riga per ogni tipo di stream e per ogni codice di errore rilevato durante l'intervallo di un minuto per ogni combinazione di timestamp e tabella. Le richieste riuscite hanno il codice di errore impostato su OK
. Se
Nessun dato è stato importato in una tabella durante un determinato periodo di tempo, quindi non sono presenti righe per i timestamp corrispondenti per quella tabella.
Le INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_*
viste hanno
schema riportato di seguito:
Nome colonna | Tipo di dati | Valore |
---|---|---|
start_timestamp |
TIMESTAMP |
(Colonna di partizionamento) Timestamp di inizio dell'intervallo di 1 minuto per le statistiche aggregate. |
project_id |
STRING |
(Colonna di clustering) ID del progetto. |
project_number |
INTEGER |
Numero del progetto. |
dataset_id |
STRING |
ID (colonna clustering) del set di dati. |
table_id |
STRING |
ID (colonna clustering) della tabella. |
stream_type |
STRING |
Il tipo di stream utilizzato per l'importazione dei dati con l'API BigQuery Storage Write. Deve essere "PREDEFINITO", "COMMITTED", "BUFFERED" o "IN ATTESA". |
error_code |
STRING |
Codice di errore restituito per le richieste specificate da questa riga. "OK" per le richieste riuscite. |
total_requests |
INTEGER |
Numero totale di richieste nell'intervallo di 1 minuto. |
total_rows |
INTEGER |
Numero totale di righe di tutte le richieste nell'intervallo di 1 minuto. |
total_input_bytes |
INTEGER |
Numero totale di byte di tutte le righe nell'intervallo di 1 minuto. |
Conservazione dei dati
Questa visualizzazione contiene la cronologia delle importazioni dell'API BigQuery StorageWrite degli ultimi 180 giorni.
Ambito e sintassi
Le query relative a questa vista devono includere un qualificatore regione. Se non specifichi un qualificatore regionale, i metadati vengono recuperati da tutti regioni. La tabella seguente spiega l'ambito della regione per questa visualizzazione:
Nome vista | Ambito risorsa | Ambito regione |
---|---|---|
[PROJECT_ID.]`region-REGION`.INFORMATION_SCHEMA.WRITE_API_TIMELINE[_BY_PROJECT] |
Livello progetto | REGION |
- (Facoltativo)
PROJECT_ID
: l'ID del tuo progetto Google Cloud. Se non viene specificato, viene utilizzato il progetto predefinito.
REGION
: qualsiasi nome della regione del set di dati. Ad esempio:`region-us`
.
Esempio
- Per eseguire query sui dati nella regione multipla degli Stati Uniti, utilizza
`region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT
- Per eseguire query sui dati nella regione multipla dell'UE, utilizza
`region-eu`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT
- Per eseguire query sui dati nella regione asia-northeast1, utilizza
`region-asia-northeast1`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT
Per un elenco delle regioni disponibili, consulta Località dei set di dati.
Esempi
Esempio 1: errori di importazione recenti dell'API BigQuery Storage Write
L'esempio seguente calcola la suddivisione al minuto delle richieste non andate a buon fine totali per tutte le tabelle del progetto negli ultimi 30 minuti, suddivise per tipo di stream e codice di errore:
SELECT start_timestamp, stream_type, error_code, SUM(total_requests) AS num_failed_requests FROM `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE WHERE error_code != 'OK' AND start_timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP, INTERVAL 30 MINUTE) GROUP BY start_timestamp, stream_type, error_code ORDER BY start_timestamp DESC;
Il risultato è simile al seguente:
+---------------------+-------------+------------------+---------------------+ | start_timestamp | stream_type | error_code | num_failed_requests | +---------------------+-------------+------------------+---------------------+ | 2023-02-24 00:25:00 | PENDING | NOT_FOUND | 5 | | 2023-02-24 00:25:00 | DEFAULT | INVALID_ARGUMENT | 1 | | 2023-02-24 00:25:00 | DEFAULT | DEADLINE_EXCEEDED| 4 | | 2023-02-24 00:24:00 | PENDING | INTERNAL | 3 | | 2023-02-24 00:24:00 | DEFAULT | INVALID_ARGUMENT | 1 | | 2023-02-24 00:24:00 | DEFAULT | DEADLINE_EXCEEDED| 2 | +---------------------+-------------+------------------+---------------------+
Esempio 2: suddivisione per minuto di tutte le richieste con codici di errore
L'esempio seguente calcola una suddivisione al minuto delle richieste di accodamento riuscite e non riuscite, suddivise in categorie di codici di errore. Questa query potrebbe essere utilizzata per compilare una dashboard.
SELECT start_timestamp, SUM(total_requests) AS total_requests, SUM(total_rows) AS total_rows, SUM(total_input_bytes) AS total_input_bytes, SUM( IF( error_code IN ( 'INVALID_ARGUMENT', 'NOT_FOUND', 'CANCELLED', 'RESOURCE_EXHAUSTED', 'ALREADY_EXISTS', 'PERMISSION_DENIED', 'UNAUTHENTICATED', 'FAILED_PRECONDITION', 'OUT_OF_RANGE'), total_requests, 0)) AS user_error, SUM( IF( error_code IN ( 'DEADLINE_EXCEEDED','ABORTED', 'INTERNAL', 'UNAVAILABLE', 'DATA_LOSS', 'UNKNOWN'), total_requests, 0)) AS server_error, SUM(IF(error_code = 'OK', 0, total_requests)) AS total_error, FROM `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE GROUP BY start_timestamp ORDER BY start_timestamp DESC;
Il risultato è simile al seguente:
+---------------------+----------------+------------+-------------------+------------+--------------+-------------+ | start_timestamp | total_requests | total_rows | total_input_bytes | user_error | server_error | total_error | +---------------------+----------------+------------+-------------------+------------+--------------+-------------+ | 2020-04-15 22:00:00 | 441854 | 441854 | 23784853118 | 0 | 17 | 17 | | 2020-04-15 21:59:00 | 355627 | 355627 | 26101982742 | 8 | 0 | 13 | | 2020-04-15 21:58:00 | 354603 | 354603 | 26160565341 | 0 | 0 | 0 | | 2020-04-15 21:57:00 | 298823 | 298823 | 23877821442 | 2 | 0 | 2 | +---------------------+----------------+------------+-------------------+------------+--------------+-------------+
Esempio 3: tabelle con il maggior traffico in entrata
L'esempio seguente restituisce le statistiche di importazione dell'API BigQuery Storage Scrivi per le 10 tabelle con il traffico più in entrata:
SELECT project_id, dataset_id, table_id, SUM(total_rows) AS num_rows, SUM(total_input_bytes) AS num_bytes, SUM(total_requests) AS num_requests FROM `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT GROUP BY project_id, dataset_id, table_id ORDER BY num_bytes DESC LIMIT 10;
Il risultato è simile al seguente:
+----------------------+------------+-------------------------------+------------+----------------+--------------+ | project_id | dataset_id | table_id | num_rows | num_bytes | num_requests | +----------------------+------------+-------------------------------+------------+----------------+--------------+ | my-project | dataset1 | table1 | 8016725532 | 73787301876979 | 8016725532 | | my-project | dataset1 | table2 | 26319580 | 34199853725409 | 26319580 | | my-project | dataset2 | table1 | 38355294 | 22879180658120 | 38355294 | | my-project | dataset1 | table3 | 270126906 | 17594235226765 | 270126906 | | my-project | dataset2 | table2 | 95511309 | 17376036299631 | 95511309 | | my-project | dataset2 | table3 | 46500443 | 12834920497777 | 46500443 | | my-project | dataset2 | table4 | 25846270 | 7487917957360 | 25846270 | | my-project | dataset1 | table4 | 18318404 | 5665113765882 | 18318404 | | my-project | dataset1 | table5 | 42829431 | 5343969665771 | 42829431 | | my-project | dataset1 | table6 | 8771021 | 5119004622353 | 8771021 | +----------------------+------------+-------------------------------+------------+----------------+--------------+
Esempio 4: rapporto di errori di importazione dell'API BigQuery Storage Scrivi per una tabella
L'esempio seguente calcola una suddivisione giornaliera degli errori per una tabella specifica, suddivisa per codice di errore:
SELECT TIMESTAMP_TRUNC(start_timestamp, DAY) as day, project_id, dataset_id, table_id, error_code, SUM(total_rows) AS num_rows, SUM(total_input_bytes) AS num_bytes, SUM(total_requests) AS num_requests FROM `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT WHERE table_id LIKE 'my_table' GROUP BY project_id, dataset_id, table_id, error_code, day ORDER BY day, project_id, dataset_id DESC;
Il risultato è simile al seguente:
+---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+ | day | project_id | dataset_id | table_id | error_code | num_rows | num_bytes | num_requests | +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+ | 2020-04-21 00:00:00 | my_project | my_dataset | my_table | OK | 41 | 252893 | 41 | | 2020-04-20 00:00:00 | my_project | my_dataset | my_table | OK | 2798 | 10688286 | 2798 | | 2020-04-19 00:00:00 | my_project | my_dataset | my_table | OK | 2005 | 7979495 | 2005 | | 2020-04-18 00:00:00 | my_project | my_dataset | my_table | OK | 2054 | 7972378 | 2054 | | 2020-04-17 00:00:00 | my_project | my_dataset | my_table | OK | 2056 | 6978079 | 2056 | | 2020-04-17 00:00:00 | my_project | my_dataset | my_table | INTERNAL | 4 | 10825 | 4 | +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+