OpenAPI tools enable AI coach to dynamically retrieve data from remote APIs based on the conversation context.
Before you begin
If you have difficulties with pre-existing APIs, use the following flexible approach:
- Create Cloud Run functions as a wrapper of the pre-existing API. The Cloud Run functions fills in additional required parameters and performs postprocessing of API responses.
- Create an OpenAPI tool to call your Cloud Run functions.
While Datastore API might require additional input parameters, such as setting the search result mode, a Cloud Run functions requires only one parameter (query), which AI coach can extract from the conversation context. In terms of response processing, the Cloud Run functions only returns the top hit instead of all results.
Follow these steps to access Datastore.
Step 1: Create Datastore and search app
- Follow the steps in Datastore to create Datastore.
- Follow the steps to Create a search app.
- Check Datastore and search app using API to verify its solution type, search tier, and if chunking is enabled.
Run the following command to retrieve the chunking.
gcurl -sX GET \ "https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig"
The following example shows that chunking is enabled.
{ "name": "projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig", "chunkingConfig": { "layoutBasedChunkingConfig": { "chunkSize": 500, "includeAncestorHeadings": true } }, "defaultParsingConfig": { "digitalParsingConfig": {} } }
Run the following command to retrieve the solution type and search tier.
gcurl -X GET \ "https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}"
The following example shows that solution type and search tier are verified.
{ "name": "projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}", "displayName": "iphone_", "dataStoreIds": [ "${data_store_id}" ], "solutionType": "SOLUTION_TYPE_SEARCH", "searchEngineConfig": { "searchTier": "SEARCH_TIER_ENTERPRISE" }, "commonConfig": { "companyName": "Google" }, "industryVertical": "GENERIC" }
Step 2: Create Cloud Run functions to call the Datastore
To authenticate, configure your Cloud Run functions to require an identity token. Cloud Run functions help to wrap complex API into basic API. They perform the following actions:
- Fills in additional fields in the request.
- Calls the Datastore API to perform the search.
- Processes the API response and returns the top results.
After you create Cloud Run functions, create an OpenAPI tool to invoke your Cloud Run functions.
In the following example, the Cloud Run functions convert the Datastore API to perform searches and give you a list of search results.
import os import requests import google.auth import google.auth.transport.requests import functions_framework @functions_framework.http def call_vertex_search(request): """ HTTP Cloud Function to invoke a Vertex AI Search endpoint. """ # --- Configuration - Tailor to your Vertex AI Search specifics --- project_id = ${project_id} engine_id = "${data_store_id}" # Establish the Vertex AI Search endpoint URL endpoint = f"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_chat:search" # --- Acquire Authentication Token --- try: credentials, project = google.auth.default() auth_req = google.auth.transport.requests.Request() credentials.refresh(auth_req) token = credentials.token except Exception as e: print(f"Authentication token retrieval error: {e}") return f"Authentication token retrieval error: {e}", 500 headers = { "Authorization": f"Bearer {token}", "Content-Type": "application/json", } # --- Formulate Search Query --- # Extract the query from the request; otherwise, employ a default. request_json = request.get_json(silent=True) query = "what is the price of iphone 13?" # Default query if request_json and 'query' in request_json: query = request_json['query'] payload = { "query": query, "page_size": 5, "content_search_spec": { "search_result_mode": "CHUNKS" } # Additional search parameters, such as filters or boost_spec, can be appended here. # "filter": "some_attribute:ANY(\"value\")", } # --- Execute Vertex AI Search API Call --- try: response = requests.post(endpoint, headers=headers, json=payload) response.raise_for_status() # Trigger an exception for unfavorable status codes. search_results = response.json() print(f"Search results: {search_results}") extracted_data = search_results["results"][0]["chunk"]["content"] if extracted_data is not None: print(f"Extracted data: {extracted_data}") return {"content": extracted_data}, 200 else: print("Failed to extract search results from the response.") return "Failed to extract search results from the response", 404 except requests.exceptions.RequestException as e: print(f"Vertex AI Search invocation error: {e}") if e.response is not None: print(f"Error details: {e.response.text}") return f"Vertex AI Search invocation error: {e.response.text}", e.response.status_code return f"Vertex AI Search invocation error: {e}", 500 except Exception as e: print(f"An unanticipated error transpired: {e}") return f"An unanticipated error transpired: {e}", 500
Use Shell to test the Cloud Run functions. Try sending a query like what is the price of iphone 13, as shown in the following example.
export CLOUDSDK_CORE_PROJECT=${project_id} curl -H "Authorization: Bearer "$(gcloud auth print-identity-token) -H "X-Goog-User-Project: ${CLOUDSDK_CORE_PROJECT}" -H "Content-Type: application/json; charset=utf-8" -X GET "https://${CLOUD_FUNCTION_ENDPOINT}/?query=what%20is%20the%20price%20of%20iphone%2013"
You should receive a response like the following:
{"content":"Table of contents\niPhone price history iPhone 4S (2011)\niPhone 4S original starting MSRP: $199\nInflation-adjusted iPhone 4S price: $280\niPhone 5 (2012)\niPhone 5 Original starting MSRP: $199\nInflation-adjusted iPhone 5 price: $276\niPhone 5S/5C (2013) iPhone 5S original starting MSRP: $199\niPhone 5C original starting MSRP: $99\nInflation-adjusted iPhone 5S price: $270\nInflation-adjusted iPhone 5C price: $134\niPhone 6/6 Plus (2014) Table of contents\niPhone price history iPhone 6 original starting MSRP: $199\niPhone 6 Plus original starting MSRP: $299\nInflation-adjusted iPhone 6 price: $266\nInflation-adjusted iPhone 6 Plus price: $398\niPhone 6S/6S Plus (2015)\niPhone 6S original starting MSRP: $199\niPhone 6S Plus original starting MSRP: $299\nInflation-adjusted iPhone 6S price: $265\nInflation-adjusted iPhone 6S Plus price: $397\niPhone 7/7 Plus (2016) Table of contents\niPhone price history iPhone 7 original starting MSRP: $649\niPhone 7 Plus original starting MSRP: $769\nInflation-adjusted iPhone 7 price: $854\nInflation-adjusted iPhone 7 Plus price: $1,011\niPhone 8/8 Plus (2017)\niPhone 8 original starting MSRP: $699\niPhone 8 Plus original starting MSRP: $799\nInflation-adjusted iPhone 8 price: $900\nInflation-adjusted iPhone 8 Plus price: $1,029\niPhone X (2017)\niPhone X original starting MSRP: $999\nInflation-adjusted iPhone X Plus price: $1,287\niPhone XR (2018)\niPhone XR original starting MSRP: $749\nInflation-adjusted iPhone XR Plus price: $942\niPhone XS/S Max (2018) Table of contents\niPhone price history iPhone XS original starting MSRP: $999\niPhone XS Max original starting MSRP: $1,099\nInflation-adjusted iPhone XS price: $1,254\nInflation-adjusted iPhone XS Plus price: $1,380\niPhone 11/Pro/Pro Max (2019)\niPhone 11 original starting MSRP: $699\niPhone 11 Pro original starting MSRP: $999\niPhone 11 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 11 price: $863\nInflation-adjusted iPhone 11 Pro price: $1,232\nInflation-adjusted iPhone 11 Pro Max price: $1,355\niPhone 12/Mini/Pro/Pro Max (2020)\niPhone 12 original starting MSRP: $799 Table of contents\niPhone price history Login iPhone 12 Mini original starting MSRP: $699\niPhone 12 Pro original starting MSRP: $999\niPhone 12 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 12 price: $976\nInflation-adjusted iPhone 12 Mini price: $853\nInflation-adjusted iPhone 12 Pro price: $1,218\nInflation-adjusted iPhone 12 Pro Max price: $1,340 iPhone 13/Mini/Pro/Pro Max (2021)\niPhone 13 original starting MSRP: $799\niPhone 13 Mini original starting MSRP: $699\niPhone 13 Pro original starting MSRP: $999\niPhone 13 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 13 price: $931\nInflation-adjusted iPhone 13 Mini price: $814\nInflation-adjusted iPhone 13 Pro price: $1,163\nInflation-adjusted iPhone 13 Pro Max price: $1,279\niPhone 14/Plus/Pro/Pro Max (2022) Table of contents\niPhone price history Robert Triggs / Android Authority"}
Step 3: Create an OpenAPI tool
Follow the steps in OpenAPI and Integration Connectors tools to create an OpenAPI tool.
The following example illustrates how the OpenAPI tool interacts with the new API provided by your Cloud Run functions.
openapi: 3.0.0 info: title: iphone_price_tool description: An API to search document about iPhone prices. version: 1.0.0 servers: - url: https://${CLOUD_FUNCTION_ENDPOINT} paths: /: get: summary: Search information about iphone prices operationId: search parameters: - in: query name: query schema: type: string required: true description: The user's question about iphone price responses: '200': description: Retrieved information about iphone price content: application/json: schema: type: object properties: content: type: string description: Information about iphone price '400': description: Bad request, query parameter is missing. content: text/plain: schema: type: string example: "Please provide a 'query' as a URL parameter for POST requests (e.g., ?query=your_question)." '500': description: Internal server error. content: text/plain: schema: type: string example: "Error querying: An unexpected error occurred."
Step 4: Create a generator
Follow the steps in OpenAPI tool to create an AI coach generator. Use the AI coach generator content to build LLM prompts.