支持的模型
下表列出了支持音频理解的模型:
模型 | 音频模态详情 |
---|---|
Gemini 1.5 Flash 转到 Gemini 1.5 Flash 模型卡片 |
每个提示的音频长度上限:约 8.4 小时或最多 100 万个词元。 系统可以理解语音以用于音频摘要、转写和翻译。 |
Gemini 1.5 Pro 转到 Gemini 1.5 Pro 模型卡片 |
每个提示的音频长度上限:约 8.4 小时或最多 100 万个词元。 系统可以理解语音以用于音频摘要、转写和翻译。 |
如需查看 Gemini 模型支持的语言列表,请参阅 Google 模型的模型信息。如需详细了解如何设计多模态提示,请参阅设计多模态提示。如果您正在寻找一种直接在移动应用和 Web 应用中使用 Gemini 的方法,请查看适用于 Android、Swift 和 Web 的 Google AI SDK。
向请求添加音频
您可以在向 Gemini 发送的请求中添加音频文件。
单一音频
下面展示了如何使用音频文件来总结播客。
Python
如需了解如何安装或更新 Python 版 Vertex AI SDK,请参阅安装 Python 版 Vertex AI SDK。如需了解详情,请参阅 Python 版 Vertex AI SDK API 参考文档。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。流式传输涉及在生成对提示的回答时接收这些回答。也就是说,只要模型生成输出词元,就会发送这些输出词元。只有在生成所有输出词元后,才会发送对提示的非流式回答。
对于流式回答,请使用 generate_content
中的 stream
参数。
response = model.generate_content(contents=[...], stream = True)
对于非流式回答,请移除该参数或将参数设置为 False
。
示例代码
音频转写
下面展示了如何使用音频文件转写面试内容。
Python
如需了解如何安装或更新 Python 版 Vertex AI SDK,请参阅安装 Python 版 Vertex AI SDK。如需了解详情,请参阅 Python 版 Vertex AI SDK API 参考文档。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。流式传输涉及在生成对提示的回答时接收这些回答。也就是说,只要模型生成输出词元,就会发送这些输出词元。只有在生成所有输出词元后,才会发送对提示的非流式回答。
对于流式回答,请使用 generate_content
中的 stream
参数。
response = model.generate_content(contents=[...], stream = True)
对于非流式回答,请移除该参数或将参数设置为 False
。
示例代码
Go
在尝试此示例之前,请按照《Vertex AI 快速入门》中的 Go 设置说明执行操作。如需了解详情,请参阅适用于 Gemini 的 Vertex AI Go SDK 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。流式传输涉及在生成对提示的回答时接收这些回答。也就是说,只要模型生成输出词元,就会发送这些输出词元。只有在生成所有输出词元后,才会发送对提示的非流式回答。
对于流式回答,请使用 GenerateContentStream
方法。
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
对于非流式回答,请使用 GenerateContent
方法。
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
示例代码
C#
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 C# 设置说明执行操作。 如需了解详情,请参阅 Vertex AI C# API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
设置模型参数
可以对多模态模型设置以下模型参数:
Top-P
Top-P 可更改模型选择输出词元的方式。系统会按照概率从最高(见 top-K)到最低的顺序选择词元,直到所选词元的概率总和等于 top-P 的值。例如,如果词元 A、B 和 C 的概率分别为 0.3、0.2 和 0.1,并且 top-P 值为 0.5
,则模型将选择 A 或 B 作为下一个词元(通过温度确定),并会排除 C,将其作为候选词元。
指定较低的值可获得随机程度较低的回答,指定较高的值可获得随机程度较高的回答。
温度
温度 (temperature) 在生成回复期间用于采样,在应用 topP
和 topK
时会生成回复。温度可以控制词元选择的随机性。
较低的温度有利于需要更少开放性或创造性回复的提示,而较高的温度可以带来更具多样性或创造性的结果。温度为 0
表示始终选择概率最高的词元。在这种情况下,给定提示的回复大多是确定的,但可能仍然有少量变化。
如果模型返回的回答过于笼统、过于简短,或者模型给出后备回答,请尝试提高温度。
有效的参数值
参数 | Gemini 1.5 Pro | Gemini 1.5 Flash |
---|---|---|
Top-P | 0 - 1.0(默认 0.95) | 0 - 1.0(默认 0.95) |
温度 | 0 - 2.0(默认 1.0) | 0 - 2.0(默认 1.0) |
音频要求
Gemini 1.5 Flash 和 Gemini 1.5 Pro 支持以下音频 MIME 类型。
音频 MIME 类型 | Gemini 1.5 Flash | Gemini 1.5 Pro |
---|---|---|
AAC - audio/aac |
||
FLAC - audio/flac |
||
MP3 - audio/mp3 |
||
MPA - audio/m4a |
||
MPEG - audio/mpeg |
||
MPGA - audio/mpga |
||
MP4 - audio/mp4 |
||
OPUS - audio/opus |
||
PCM - audio/pcm |
||
WAV - audio/wav |
||
WEBM - audio/webm |
限制
虽然 Gemini 多模态模型在许多多模态用户案例中表现出强大功能,但了解模型的限制非常重要:
- 非语音声音识别:支持音频的模型可能会在识别非语音声音时犯错。
- 仅音频的时间戳:支持音频的模型无法为带有音频文件的请求准确生成时间戳。这包括细分和时间本地化时间戳。对于带有包含音频的视频的输入,可以准确生成时间戳。
- 转写标点符号:Gemini 1.5 Flash 返回的转写内容可能不包含标点符号。
后续步骤
- 开始使用 Gemini 多模态模型进行构建 - 新客户可获享 $300 免费 Google Cloud 赠金,探索他们可以使用 Gemini 执行的操作。
- 了解如何发送聊天提示请求。
- 了解 Responsible AI 最佳实践和 Vertex AI 的安全过滤条件。