AG2 是原始 AutoGen 的社区驱动型分支,是一个用于构建 AI 赋能的智能体的开源框架。本页介绍了如何使用特定于框架的 AG2 模板(Vertex AI SDK for Python 中的 AG2Agent
类)来开发代理。该代理会返回指定日期两种货币之间的汇率。具体步骤如下所示:
准备工作
请按照设置环境中的步骤设置您的环境。
第 1 步:定义和配置 Runnable
定义要使用的模型版本。
model = "gemini-1.5-flash-001"
定义要使用的可运行名称。
runnable_name = "Get Exchange Rate Agent"
(可选)配置模型。
from google.cloud.aiplatform.aiplatform import initializer
llm_config = {
"config_list": [{
"project_id": initializer.global_config.project,
"location": initializer.global_config.location,
"model": "gemini-1.5-flash-001",
"api_type": "google",
}]
}
如需详细了解如何在 AG2 中配置模型,请参阅模型配置深入解析。
(可选)配置模型的安全设置。以下示例展示了如何配置安全设置:
from vertexai.generative_models import HarmBlockThreshold, HarmCategory
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
}
for config_item in llm_config["config_list"]:
config_item["safety_settings"] = safety_settings
如需详细了解可用于 Gemini 中安全设置的选项,请参阅配置安全属性。
使用模型配置创建 AG2Agent
:
agent = agent_engines.AG2Agent(
model=model, # Required.
runnable_name=runnable_name, # Required.
llm_config=llm_config, # Optional.
)
如果您是在交互式环境(例如终端或 Colab 笔记本)中运行,则可以将运行查询作为中间测试步骤:
response = agent.query(input="What is the exchange rate from US dollars to Swedish currency?", max_turns=1)
print(response)
响应是类似于以下示例的 Python 字典:
{'chat_id': None,
'chat_history': [{'content': 'What is the exchange rate from US dollars to Swedish currency?',
'role': 'assistant',
'name': 'user'},
{'content': 'I do not have access to real-time information, including currency exchange rates. To get the most up-to-date exchange rate from US dollars to Swedish Krona (SEK), I recommend using a reliable online currency converter or checking with your bank. \n',
'role': 'user',
'name': 'Exchange Rate Agent'}],
'summary': 'I do not have access to real-time information, including currency exchange rates. To get the most up-to-date exchange rate from US dollars to Swedish Krona (SEK), I recommend using a reliable online currency converter or checking with your bank. \n',
'cost': {'usage_including_cached_inference': {'total_cost': 5.2875e-06,
'gemini-1.5-flash-001': {'cost': 5.2875e-06,
'prompt_tokens': 34,
'completion_tokens': 62,
'total_tokens': 96}},
'usage_excluding_cached_inference': {'total_cost': 5.2875e-06,
'gemini-1.5-flash-001': {'cost': 5.2875e-06,
'prompt_tokens': 34,
'completion_tokens': 62,
'total_tokens': 96}}},
'human_input': []}
(可选)高级自定义
AG2Agent
模板默认使用 api_type=="google"
,因为它可提供对 Google Cloud中所有基础模型的访问权限。如需使用无法通过 api_type=="google"
获取的模型,您可以自定义 llm_config
参数。
如需查看 AG2 中支持的模型及其功能的列表,请参阅模型提供程序。
llm_config=
支持的值集因聊天模型而异,因此您应参阅相应文档以了解详情。
Gemini
默认安装
当您省略 llm_config
参数时,它会在 AG2Agent
模板中使用,例如
agent = agent_engines.AG2Agent(
model=model, # Required.
runnable_name=runnable_name # Required.
)
Anthropic
首先,按照其文档设置账号并安装软件包。
接下来,定义 llm_config
:
llm_config = {
"config_list": [{
"model": "claude-3-5-sonnet-20240620", # Required.
"api_key": "ANTHROPIC_API_KEY", # Required.
"api_type": "anthropic", # Required.
}]
}
最后在 AG2Agent
模板中使用它,代码如下:
agent = agent_engines.AG2Agent(
model="claude-3-5-sonnet-20240620", # Required.
runnable_name=runnable_name, # Required.
llm_config=llm_config, # Optional.
)
OpenAI
您可以将 OpenAI
与 Gemini 的 ChatCompletions API 搭配使用。
首先,定义 llm_config
:
import google.auth
from google.cloud.aiplatform.aiplatform import initializer
project = initializer.global_config.project
location = initializer.global_config.location
base_url = f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{project}/locations/{location}/endpoints/openapi"
# Note: the credential lives for 1 hour by default.
# After expiration, it must be refreshed.
creds, _ = google.auth.default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_req = google.auth.transport.requests.Request()
creds.refresh(auth_req)
llm_config = {
"config_list": [{
"model": "google/gemini-1.5-flash-001", # Required.
"api_type": "openai", # Required.
"base_url": base_url, # Required.
"api_key": creds.token, # Required.
}]
}
最后在 AG2Agent
模板中使用它,代码如下:
agent = agent_engines.AG2Agent(
model="google/gemini-1.5-flash-001", # Or "meta/llama3-405b-instruct-maas".
runnable_name=runnable_name, # Required.
llm_config=llm_config, # Optional.
)
第 2 步:定义和使用工具
定义模型后,下一步是定义模型用于推理的工具。这里的工具可以是 AG2 工具,也可以是 Python 函数。
定义函数时,请务必添加能完整而清晰地描述函数的参数、函数的用途以及函数返回内容的注释。模型会使用此信息来确定要使用的函数。您还必须在本地测试函数,以确认其是否正常运行。
使用以下代码定义一个返回汇率的函数:
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date.
Uses the Frankfurter API (https://api.frankfurter.app/) to obtain
exchange rate data.
Args:
currency_from: The base currency (3-letter currency code).
Defaults to "USD" (US Dollar).
currency_to: The target currency (3-letter currency code).
Defaults to "EUR" (Euro).
currency_date: The date for which to retrieve the exchange rate.
Defaults to "latest" for the most recent exchange rate data.
Can be specified in YYYY-MM-DD format for historical rates.
Returns:
dict: A dictionary containing the exchange rate information.
Example: {"amount": 1.0, "base": "USD", "date": "2023-11-24",
"rates": {"EUR": 0.95534}}
"""
import requests
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
return response.json()
如需在代理中使用函数之前先对其进行测试,请运行以下命令:
get_exchange_rate(currency_from="USD", currency_to="SEK")
响应应该类似以下内容:
{'amount': 1.0, 'base': 'USD', 'date': '2024-02-22', 'rates': {'SEK': 10.3043}}
如需在 AG2Agent
模板内使用该工具,您需要将其添加到 tools=
参数下的工具列表中:
agent = agent_engines.AG2Agent(
model=model, # Required.
runnable_name=runnable_name, # Required.
tools=[get_exchange_rate], # Optional.
)
您可以通过对代理发起测试查询在本地测试该代理。运行以下命令,使用美元和瑞典克朗在本地测试代理:
response = agent.query(input="What is the exchange rate from US dollars to Swedish currency?", max_turns=2)
响应是一个类似于以下内容的字典:
{'chat_id': None,
'chat_history': [{'content': 'What is the exchange rate from US dollars to Swedish currency?',
'role': 'assistant',
'name': 'user'},
{'content': '',
'tool_calls': [{'id': '2285',
'function': {'arguments': '{"currency_from": "USD", "currency_to": "SEK"}',
'name': 'get_exchange_rate'},
'type': 'function'}],
'role': 'assistant'},
{'content': "{'amount': 1.0, 'base': 'USD', 'date': '2025-02-27', 'rates': {'SEK': 10.6509}}",
'tool_responses': [{'tool_call_id': '2285',
'role': 'tool',
'content': "{'amount': 1.0, 'base': 'USD', 'date': '2025-02-27', 'rates': {'SEK': 10.6509}}"}],
'role': 'tool',
'name': 'user'},
{'content': 'The current exchange rate is 1 USD to 10.6509 SEK. \n',
'role': 'user',
'name': 'Get Exchange Rate Agent'},
{'content': 'What is the exchange rate from US dollars to Swedish currency?',
'role': 'assistant',
'name': 'user'},
{'content': '',
'tool_calls': [{'id': '4270',
'function': {'arguments': '{"currency_from": "USD", "currency_to": "SEK"}',
'name': 'get_exchange_rate'},
'type': 'function'}],
'role': 'assistant'},
{'content': "{'amount': 1.0, 'base': 'USD', 'date': '2025-02-27', 'rates': {'SEK': 10.6509}}",
'tool_responses': [{'tool_call_id': '4270',
'role': 'tool',
'content': "{'amount': 1.0, 'base': 'USD', 'date': '2025-02-27', 'rates': {'SEK': 10.6509}}"}],
'role': 'tool',
'name': 'user'},
{'content': 'The current exchange rate is 1 USD to 10.6509 SEK. \n',
'role': 'user',
'name': 'Get Exchange Rate Agent'}],
'summary': 'The current exchange rate is 1 USD to 10.6509 SEK. \n',
'cost': {'usage_including_cached_inference': {'total_cost': 0.0002790625,
'gemini-1.5-flash-001': {'cost': 0.0002790625,
'prompt_tokens': 757,
'completion_tokens': 34,
'total_tokens': 791}},
'usage_excluding_cached_inference': {'total_cost': 0.0002790625,
'gemini-1.5-flash-001': {'cost': 0.0002790625,
'prompt_tokens': 757,
'completion_tokens': 34,
'total_tokens': 791}}},
'human_input': []}
第 3 步:自定义编排
所有 AG2 代理都实现了 ConversableAgent 接口,该接口为编排提供了输入和输出架构。AG2Agent
需要构建一个可响应查询的可运行对象。默认情况下,AG2Agent
将通过将模型与工具绑定来构建此类可运行对象。
如果您打算执行以下操作,则可能需要自定义编排:(i) 实现可使用模型解决任务的助理代理,或者 (ii) 实现可执行代码并向其他代理提供反馈的用户代理,或者 (iii) 实现可使用模型和思维树推理解决任务的推理代理。为此,您必须在创建 AG2Agent
时替换默认可运行对象,方法是使用具有以下签名的 Python 函数指定 runnable_builder=
参数:
def runnable_builder(
**runnable_kwargs,
):
这样,您就可以使用不同的选项来自定义编排逻辑。
助理客服人员
在最简单的情况下,如需创建不进行编排的 Google 助理代理,您可以替换 AG2Agent
的 runnable_builder
。
def runnable_builder(**kwargs):
from autogen import agentchat
return agentchat.AssistantAgent(**kwargs)
agent = agent_engines.AG2Agent(
model=model,
runnable_name=runnable_name,
runnable_builder=runnable_builder,
)
用户代理
在最简单的情况下,如需创建不进行编排的 Google 助理代理,您可以替换 AG2Agent
的 runnable_builder
。
def runnable_builder(**kwargs):
from autogen import agentchat
return agentchat.UserProxyAgent(**kwargs)
agent = agent_engines.AG2Agent(
model=model,
runnable_name=runnable_name,
runnable_builder=runnable_builder,
)
推理代理
在最简单的情况下,如需创建不进行编排的推理代理,您可以替换 AG2Agent
的 runnable_builder
。
def runnable_builder(**kwargs):
from autogen import agentchat
return agentchat.ReasoningAgent(**kwargs)
agent = agent_engines.AG2Agent(
model=model,
runnable_name=runnable_name,
runnable_builder=runnable_builder,
)
后续步骤
- 部署应用。