RAG quickstart for Python

This page shows you how to use the Vertex AI SDK to run Vertex AI RAG Engine tasks.

You can also follow along using this notebook Intro to Vertex AI RAG Engine.

Prepare your Google Cloud console

To use Vertex AI RAG Engine, do the following:

  1. Install the Vertex AI SDK for Python.

  2. Run this command in the Google Cloud console to set up your project.

    gcloud config set {project}

  3. Run this command to authorize your login.

    gcloud auth application-default login

Run Vertex AI RAG Engine

Copy and paste this sample code into the Google Cloud console to run Vertex AI RAG Engine.

Python

from vertexai import rag
from vertexai.generative_models import GenerativeModel, Tool
import vertexai

# Create a RAG Corpus, Import Files, and Generate a response

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# paths = ["https://drive.google.com/file/d/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Create RagCorpus
# Configure embedding model, for example "text-embedding-004".
embedding_model_config = rag.EmbeddingModelConfig(
  publisher_model="publishers/google/models/text-embedding-004"
)

backend_config = rag.RagVectorDbConfig(rag_embedding_model_config=embedding_model_config)

rag_corpus = rag.create_corpus(
    display_name=display_name,
    backend_config=backend_config,
)

# List the rag corpus you just created
rag_corpus = rag.list_corpora()

# Import Files to the RagCorpus
# choose a corpus to import files to, you can use rag_corpus.name for just created corpus
# or use the name in list_corpora()
corpus_name = rag_corpus.name

transformation_config = rag.TransformationConfig(
      chunking_config=rag.ChunkingConfig(
          chunk_size=512,
          chunk_overlap=100,
      ),
  )

rag.import_files(
    corpus_name,
    paths,
    transformation_config=transformation_config, # Optional
    max_embedding_requests_per_min=1000,  # Optional
)

# List the files in the rag corpus
rag.list_files(corpus_name)

# Direct context retrieval
rag_retrieval_config=rag.RagRetrievalConfig(
    top_k=3,  # Optional
    filter=rag.Filter(vector_distance_threshold=0.5)  # Optional
)
response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=corpus_name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="What is RAG and why it is helpful?",
    rag_retrieval_config=rag_retrieval_config,
)
print(response)

# Enhance generation
# Create a RAG retrieval tool
rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=corpus_name,  # Currently only 1 corpus is allowed.
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            rag_retrieval_config=rag_retrieval_config,
        ),
    )
)
# Create a gemini model instance
rag_model = GenerativeModel(
    model_name="gemini-1.5-flash-001", tools=[rag_retrieval_tool]
)

# Generate response
response = rag_model.generate_content("What is RAG and why it is helpful?")
print(response.text)
# Example response:
#   RAG stands for Retrieval-Augmented Generation.
#   It's a technique used in AI to enhance the quality of responses
# ...

What's next