Répertorier les modèles réglés pour les LLM Vertex (IA générative)

Exemple de code montrant comment obtenir la liste des modèles réglés pour les LLM Vertex

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.ListModelsRequest;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceClient.ListModelsPagedResponse;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class ListTunedModelsSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";

    String location = "us-central1";
    String model = "text-bison@001";

    listTunedModelsSample(project, location, model);
  }

  // List tuned models for a large language model
  public static void listTunedModelsSample(String project, String location, String model)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      final String parent = LocationName.of(project, location).toString();
      final String filter =
          String.format("labels.google-vertex-llm-tuning-base-model-id=%s", model);
      ListModelsRequest request =
          ListModelsRequest.newBuilder().setParent(parent).setFilter(filter).build();

      ListModelsPagedResponse listModelsPagedResponse = modelServiceClient.listModels(request);
      System.out.println("List Tuned Models response");
      for (Model element : listModelsPagedResponse.iterateAll()) {
        System.out.format("\tModel Name: %s\n", element.getName());
        System.out.format("\tModel Display Name: %s\n", element.getDisplayName());
      }
    }
  }
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import vertexai

from vertexai.language_models import TextGenerationModel

# TODO(developer): Update values for project_id & location
vertexai.init(project=project_id, location=location)
model = TextGenerationModel.from_pretrained("text-bison@002")
tuned_model_names = model.list_tuned_model_names()
print(tuned_model_names)

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.