Exportar um modelo para classificação tabular

Exporta um modelo para classificação tabular usando o método export_model.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Java

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.ExportModelOperationMetadata;
import com.google.cloud.aiplatform.v1.ExportModelRequest;
import com.google.cloud.aiplatform.v1.ExportModelResponse;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ExportModelTabularClassificationSample {
  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String gcsDestinationOutputUriPrefix = "gs://your-gcs-bucket/destination_path";
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    exportModelTableClassification(gcsDestinationOutputUriPrefix, project, modelId);
  }

  static void exportModelTableClassification(
      String gcsDestinationOutputUriPrefix, String project, String modelId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelName modelName = ModelName.of(project, location, modelId);

      GcsDestination.Builder gcsDestination = GcsDestination.newBuilder();
      gcsDestination.setOutputUriPrefix(gcsDestinationOutputUriPrefix);
      ExportModelRequest.OutputConfig outputConfig =
          ExportModelRequest.OutputConfig.newBuilder()
              .setExportFormatId("tf-saved-model")
              .setArtifactDestination(gcsDestination)
              .build();

      OperationFuture<ExportModelResponse, ExportModelOperationMetadata> exportModelResponseFuture =
          modelServiceClient.exportModelAsync(modelName, outputConfig);
      System.out.format(
          "Operation name: %s\n", exportModelResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ExportModelResponse exportModelResponse =
          exportModelResponseFuture.get(300, TimeUnit.SECONDS);
      System.out.format(
          "Export Model Tabular Classification Response: %s", exportModelResponse.toString());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const gcsDestinationOutputUriPrefix ='YOUR_GCS_DESTINATION_\
// OUTPUT_URI_PREFIX'; eg. "gs://<your-gcs-bucket>/destination_path"
// const modelId = 'YOUR_MODEL_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function exportModelTabularClassification() {
  // Configure the name resources
  const name = `projects/${project}/locations/${location}/models/${modelId}`;
  // Configure the outputConfig resources
  const outputConfig = {
    exportFormatId: 'tf-saved-model',
    artifactDestination: {
      outputUriPrefix: gcsDestinationOutputUriPrefix,
    },
  };
  const request = {
    name,
    outputConfig,
  };

  // Export Model request
  const [response] = await modelServiceClient.exportModel(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  console.log(`Export model response : ${JSON.stringify(response.result)}`);
}
exportModelTabularClassification();

Python

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

from google.cloud import aiplatform_v1beta1

def export_model_tabular_classification_sample(
    project: str,
    model_id: str,
    gcs_destination_output_uri_prefix: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.ModelServiceClient(client_options=client_options)
    gcs_destination = {"output_uri_prefix": gcs_destination_output_uri_prefix}
    output_config = {
        "artifact_destination": gcs_destination,
        "export_format_id": "tf-saved-model",
    }
    name = client.model_path(project=project, location=location, model=model_id)
    response = client.export_model(name=name, output_config=output_config)
    print("Long running operation:", response.operation.name)
    print("output_info:", response.metadata.output_info)
    export_model_response = response.result(timeout=timeout)
    print("export_model_response:", export_model_response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte o navegador de exemplos do Google Cloud.