Obtenir une explication pour la classification tabulaire
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Obtenez des explications sur des données tabulaires à l'aide de la méthode explain.
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Explain for tabular\n\nGets explanation for tabular using the explain method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from typing import Dict\n\n from google.cloud import aiplatform_v1beta1\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def explain_tabular_sample(\n project: str,\n endpoint_id: str,\n instance_dict: Dict,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform_v1beta1.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html(client_options=client_options)\n # The format of each instance should conform to the deployed model's prediction input schema.\n instance = json_format.ParseDict(instance_dict, Value())\n instances = [instance]\n # tabular models do not have additional parameters\n parameters_dict = {}\n parameters = json_format.ParseDict(parameters_dict, Value())\n endpoint = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_endpoint_path(\n project=project, location=location, endpoint=endpoint_id\n )\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_explain(\n endpoint=endpoint, instances=instances, parameters=parameters\n )\n print(\"response\")\n print(\" deployed_model_id:\", response.deployed_model_id)\n explanations = response.explanations\n for explanation in explanations:\n print(\" explanation\")\n # Feature attributions.\n attributions = explanation.attributions\n for attribution in attributions:\n print(\" attribution\")\n print(\" baseline_output_value:\", attribution.baseline_output_value)\n print(\" instance_output_value:\", attribution.instance_output_value)\n print(\" output_display_name:\", attribution.output_display_name)\n print(\" approximation_error:\", attribution.approximation_error)\n print(\" output_name:\", attribution.output_name)\n output_index = attribution.output_index\n for output_index in output_index:\n print(\" output_index:\", output_index)\n predictions = response.predictions\n for prediction in predictions:\n print(\" prediction:\", dict(prediction))\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]