Create a training pipeline for video action recognition

Creates a training pipeline for video action recognition using the create_training_pipeline method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoActionRecognitionInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoActionRecognitionInputs.ModelType;
import java.io.IOException;

public class CreateTrainingPipelineVideoActionRecognitionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String datasetId = "DATASET_ID";
    String modelDisplayName = "MODEL_DISPLAY_NAME";
    createTrainingPipelineVideoActionRecognitionSample(
        project, displayName, datasetId, modelDisplayName);
  }

  static void createTrainingPipelineVideoActionRecognitionSample(
      String project, String displayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings settings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient client = PipelineServiceClient.create(settings)) {
      AutoMlVideoActionRecognitionInputs trainingTaskInputs =
          AutoMlVideoActionRecognitionInputs.newBuilder().setModelType(ModelType.CLOUD).build();

      InputDataConfig inputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(displayName)
              .setTrainingTaskDefinition(
                  "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
                      + "automl_video_action_recognition_1.0.0.yaml")
              .setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
              .setInputDataConfig(inputDataConfig)
              .setModelToUpload(modelToUpload)
              .build();
      LocationName parent = LocationName.of(project, location);
      TrainingPipeline response = client.createTrainingPipeline(parent, trainingPipeline);
      System.out.format("response: %s\n", response);
      System.out.format("Name: %s\n", response.getName());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineVideoActionRecognition() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Values should match the input expected by your model.
  const trainingTaskInputObj =
    new definition.AutoMlVideoActionRecognitionInputs({
      // modelType can be either 'CLOUD' or 'MOBILE_VERSATILE_1'
      modelType: 'CLOUD',
    });
  const trainingTaskInputs = trainingTaskInputObj.toValue();

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition:
      'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_action_recognition_1.0.0.yaml',
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {
    parent,
    trainingPipeline,
  };

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline video action recognition response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineVideoActionRecognition();

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import trainingjob


def create_training_pipeline_video_action_recognition_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    model_type: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    training_task_inputs = trainingjob.definition.AutoMlVideoActionRecognitionInputs(
        # modelType can be either 'CLOUD' or 'MOBILE_VERSATILE_1'
        model_type=model_type,
    ).to_value()

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_action_recognition_1.0.0.yaml",
        "training_task_inputs": training_task_inputs,
        "input_data_config": {"dataset_id": dataset_id},
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.