Créer un pipeline d'entraînement pour les prévisions tabulaires

Crée un pipeline d'entraînement pour les prévisions tabulaires à l'aide de la méthode create_training_pipeline.

Exemple de code

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_training_pipeline_tabular_forecasting_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    target_column: str,
    time_series_identifier_column: str,
    time_column: str,
    time_series_attribute_columns: str,
    unavailable_at_forecast: str,
    available_at_forecast: str,
    forecast_horizon: int,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    # set the columns used for training and their data types
    transformations = [
        {"auto": {"column_name": "date"}},
        {"auto": {"column_name": "state_name"}},
        {"auto": {"column_name": "county_fips_code"}},
        {"auto": {"column_name": "confirmed_cases"}},
        {"auto": {"column_name": "deaths"}},
    ]

    data_granularity = {"unit": "day", "quantity": 1}

    # the inputs should be formatted according to the training_task_definition yaml file
    training_task_inputs_dict = {
        # required inputs
        "targetColumn": target_column,
        "timeSeriesIdentifierColumn": time_series_identifier_column,
        "timeColumn": time_column,
        "transformations": transformations,
        "dataGranularity": data_granularity,
        "optimizationObjective": "minimize-rmse",
        "trainBudgetMilliNodeHours": 8000,
        "timeSeriesAttributeColumns": time_series_attribute_columns,
        "unavailableAtForecast": unavailable_at_forecast,
        "availableAtForecast": available_at_forecast,
        "forecastHorizon": forecast_horizon,
    }

    training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_forecasting_1.0.0.yaml",
        "training_task_inputs": training_task_inputs,
        "input_data_config": {
            "dataset_id": dataset_id,
            "fraction_split": {
                "training_fraction": 0.8,
                "validation_fraction": 0.1,
                "test_fraction": 0.1,
            },
        },
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.