Créer un pipeline d'entraînement pour les prévisions tabulaires

Crée un pipeline d'entraînement pour les prévisions tabulaires à l'aide de la méthode create_training_pipeline.

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def create_training_pipeline_tabular_forecasting_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    target_column: str,
    time_series_identifier_column: str,
    time_column: str,
    static_columns: str,
    time_variant_past_only_columns: str,
    time_variant_past_and_future_columns: str,
    forecast_window_end: int,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    # set the columns used for training and their data types
    transformations = [
        {"auto": {"column_name": "date"}},
        {"auto": {"column_name": "state_name"}},
        {"auto": {"column_name": "county_fips_code"}},
        {"auto": {"column_name": "confirmed_cases"}},
        {"auto": {"column_name": "deaths"}},
    ]

    period = {"unit": "day", "quantity": 1}

    # the inputs should be formatted according to the training_task_definition yaml file
    training_task_inputs_dict = {
        # required inputs
        "targetColumn": target_column,
        "timeSeriesIdentifierColumn": time_series_identifier_column,
        "timeColumn": time_column,
        "transformations": transformations,
        "period": period,
        "optimizationObjective": "minimize-rmse",
        "trainBudgetMilliNodeHours": 8000,
        "staticColumns": static_columns,
        "timeVariantPastOnlyColumns": time_variant_past_only_columns,
        "timeVariantPastAndFutureColumns": time_variant_past_and_future_columns,
        "forecastWindowEnd": forecast_window_end,
    }

    training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_forecasting_1.0.0.yaml",
        "training_task_inputs": training_task_inputs,
        "input_data_config": {
            "dataset_id": dataset_id,
            "fraction_split": {
                "training_fraction": 0.8,
                "validation_fraction": 0.1,
                "test_fraction": 0.1,
            },
        },
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.