Créer une tâche d'étiquetage de données pour la segmentation d'image

Crée une tâche d'étiquetage de données pour la segmentation d'image à l'aide de la méthode create_data_labeling_job.

Exemple de code

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def create_data_labeling_job_image_segmentation_sample(
    project: str,
    display_name: str,
    dataset: str,
    instruction_uri: str,
    inputs_schema_uri: str,
    annotation_spec: dict,
    annotation_set_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    inputs_dict = {"annotationSpecColors": [annotation_spec]}
    inputs = json_format.ParseDict(inputs_dict, Value())

    data_labeling_job = {
        "display_name": display_name,
        # Full resource name: projects/{project}/locations/{location}/datasets/{dataset_id}
        "datasets": [dataset],
        "labeler_count": 1,
        "instruction_uri": instruction_uri,
        "inputs_schema_uri": inputs_schema_uri,
        "inputs": inputs,
        "annotation_labels": {
            "aiplatform.googleapis.com/annotation_set_name": annotation_set_name
        },
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_data_labeling_job(
        parent=parent, data_labeling_job=data_labeling_job
    )
    print("response:", response)

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.