Cancelar um job de previsão em lote

Cancela um job de previsão em lote usando o método cancel_batch_predict_job.

Exemplo de código

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.BatchPredictionJobName;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import java.io.IOException;

public class CancelBatchPredictionJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String batchPredictionJobId = "YOUR_BATCH_PREDICTION_JOB_ID";
    cancelBatchPredictionJobSample(project, batchPredictionJobId);
  }

  static void cancelBatchPredictionJobSample(String project, String batchPredictionJobId)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      BatchPredictionJobName batchPredictionJobName =
          BatchPredictionJobName.of(project, location, batchPredictionJobId);

      jobServiceClient.cancelBatchPredictionJob(batchPredictionJobName);

      System.out.println("Cancelled the Batch Prediction Job");
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionJobId = 'YOUR_BATCH_PREDICTION_JOB_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function cancelBatchPredictionJob() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/batchPredictionJobs/${batchPredictionJobId}`;
  const request = {
    name,
  };

  // Cancel batch prediction job request
  await jobServiceClient.cancelBatchPredictionJob(request);
  console.log('Cancel batch prediction job response :');
}

cancelBatchPredictionJob();

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import aiplatform


def cancel_batch_prediction_job_sample(
    project: str,
    batch_prediction_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.batch_prediction_job_path(
        project=project, location=location, batch_prediction_job=batch_prediction_job_id
    )
    response = client.cancel_batch_prediction_job(name=name)
    print("response:", response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.