Cancelar um job de previsão em lote

Cancela um job de previsão em lote usando o método cancel_batch_predict_job.

Amostra de código

Java

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.


import com.google.cloud.aiplatform.v1.BatchPredictionJobName;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import java.io.IOException;

public class CancelBatchPredictionJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String batchPredictionJobId = "YOUR_BATCH_PREDICTION_JOB_ID";
    cancelBatchPredictionJobSample(project, batchPredictionJobId);
  }

  static void cancelBatchPredictionJobSample(String project, String batchPredictionJobId)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      BatchPredictionJobName batchPredictionJobName =
          BatchPredictionJobName.of(project, location, batchPredictionJobId);

      jobServiceClient.cancelBatchPredictionJob(batchPredictionJobName);

      System.out.println("Cancelled the Batch Prediction Job");
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionJobId = 'YOUR_BATCH_PREDICTION_JOB_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function cancelBatchPredictionJob() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/batchPredictionJobs/${batchPredictionJobId}`;
  const request = {
    name,
  };

  // Cancel batch prediction job request
  await jobServiceClient.cancelBatchPredictionJob(request);
  console.log('Cancel batch prediction job response :');
}

cancelBatchPredictionJob();

Python

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

from google.cloud import aiplatform

def cancel_batch_prediction_job_sample(
    project: str,
    batch_prediction_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.batch_prediction_job_path(
        project=project, location=location, batch_prediction_job=batch_prediction_job_id
    )
    response = client.cancel_batch_prediction_job(name=name)
    print("response:", response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte o navegador de exemplos do Google Cloud.