여기에서 Next 2021의 Google Cloud에서 Spark 세션을 시청하세요.

바로 이동

Google Cloud에서 Spark 실행

업계 최초의 자동 확장 서버리스 Spark는 최고의 Google 기반 오픈소스 도구와 통합됩니다. ETL, 데이터 과학, 탐색 분석을 포함한 모든 사용 사례에서 필요한 곳에서 Spark를 개발하고 실행하세요.

이점

개발자 생산성 향상 및 데이터 통계 속도 향상

서버리스 Spark를 통한 운영 단순성

수동 인프라 프로비저닝 또는 조정 없이 자동 확장되는 Spark 애플리케이션 및 파이프라인을 작성합니다.

모든 데이터 사용자를 위한 원활한 Spark

Spark는 BigQuery, Vertex AI, Dataplex와 통합되어 있으므로 ETL, 데이터 탐색, 분석, ML을 위한 커스텀 통합 없이 클릭 두 번으로 이러한 인터페이스에서 작성하고 실행할 수 있습니다.

소비 유연성

하나의 기술로 모든 것을 이룰 수는 없습니다. Spark 애플리케이션의 서버리스, Kubernetes 클러스터, 컴퓨팅 클러스터 중에서 선택할 수 있습니다.

주요 특징

클릭 두 번이면 선택한 인터페이스에서 자동 확장되는 Spark 작업 실행

서버리스 Spark(GA 출시 예정)

개발자는 코드와 로직에 모든 시간을 소비하고 선택한 인터페이스를 사용하여 자동 프로비저닝 및 자동 확장되는 Spark 작업을 제출할 수 있습니다.

BigQuery를 통한 Spark(비공개 미리보기)

통합 SQL 및 Spark 환경: 데이터 웨어하우징 사용자가 BigQuery 데이터를 내보내지 않고 BigQuery 데이터에 Spark를 쉽게 작성하고 실행할 수 있습니다. 인프라 관리가 필요하지 않습니다.

Vertex AI를 통한 Spark(비공개 미리보기)

클릭 한 번으로 데이터 과학에 Spark 이용: 데이터 과학자가 보안이 기본 제공되는 Vertex AI Workbench를 통해 개발에 Spark를 원활하게 사용할 수 있습니다. Spark는 Vertex AI의 MLOps 기능과 통합되어 Vertex AI 파이프라인과 통합된 노트북 실행자를 통해 Spark 코드를 실행할 수 있습니다.

Dataplex를 통한 Spark(비공개 미리보기)

클릭 한 번으로 SparkSQL, Notebooks 또는 PySpark에 액세스할 수 있는 단일 인터페이스에서 Google Cloud 전반의 데이터에 대해 자동 확장되는 Spark를 실행합니다. 또한 데이터 및 데이터 레이크에 기본 제공되는 거버넌스 기능과 함께 노트북 및 스크립트를 저장, 공유, 검색하는 기능과 간편한 공동작업 기능을 제공합니다.

유연한 소비 옵션

노옵스(no-ops) 배포를 위한 서버리스 Spark 외에도 인프라 관리를 위해 Kubernetes에서 표준화한 고객은 Google Kubernetes Engine(비공개 미리보기)에서 Spark를 실행하여 리소스 활용을 개선하고 인프라 관리를 간소화할 수 있습니다. Hadoop 스타일의 인프라 관리를 원하는 고객은 Compute Engine(일반 안정화 버전)에서 Spark를 실행할 수 있습니다.


시작할 준비가 되셨나요? 문의하기

새로운 소식

Spark에 관한 최신 Google Cloud 뉴스, 블로그, 이벤트 소식 받기

여기에서 등록하여 Google Cloud에서 Spark 실행을 위한 새 솔루션의 사전 체험판을 신청하세요.