Le traitement du langage naturel (TLN) utilise le machine learning pour révéler la structure et la signification du texte. Grâce aux applications de traitement du langage naturel, les organisations peuvent analyser du texte et extraire des informations sur des personnes, des lieux et des événements afin de mieux comprendre le sentiment général qui se dégage sur les médias sociaux et les conversations avec les clients.
Découvrez comment extraire des insights à partir d'un texte naturel non structuré à l'aide du machine learning de Google.
Prêt à vous lancer ? Les nouveaux clients bénéficient d'un maximum de 300 $ de crédits pour essayer Vertex AI et d'autres produits Google Cloud.
En tant que branche de l'intelligence artificielle, le TLN (traitement du langage naturel) utilise le machine learning pour traiter et interpréter du texte et des données. La reconnaissance du langage naturel et la génération de langage naturel sont des types de TLN.
Un sous-domaine du TLN, la compréhension du langage naturel (NLU, Natural Language Understanding), permet de comprendre ce que signifie exactement un corpus de texte. La NLU peut classer, archiver et analyser le texte. Le TLN va encore plus loin en permettant à la prise de décision en fonction de la signification.
Les applications de traitement du langage naturel sont utilisées pour extraire des insights à partir de données textuelles non structurées et vous donnent accès aux informations extraites pour générer une nouvelle compréhension de ces données. Des exemples d'applications de traitement du langage naturel peuvent être créés à l'aide de Python, TensorFlow et PyTorch.
Sentiments des clients
L'analyse des entités vous permet de rechercher et d'étiqueter des champs dans des documents et sur des canaux pour mieux comprendre les opinions des clients, et obtenir des insights sur les produits et l'expérience utilisateur.
Compréhension des reçus et des factures
Extrayez des entités afin d'identifier des entrées communes dans les reçus et les factures, telles que des dates ou des prix, afin de comprendre les relations entre les requêtes et les paiements.
Analyse de documents
Utilisez l'extraction d'entités personnalisées pour identifier les entités spécifiques à un domaine dans les documents sans avoir à passer du temps ni à investir dans une analyse manuelle.
Classification de contenu
Classez les documents par entités communes ou entités personnalisées spécifiques à un domaine, ou selon plus de 700 catégories générales portant sur des sujets tels que le sport ou le divertissement.
Observation des tendances
Combinez actualités et texte pour permettre aux responsables marketing d'extraire du contenu pertinent sur leur marque à partir des sites d'information en ligne, d'articles et d'autres sources de données.
Santé
Améliorez la documentation clinique, l'exploration de données et la création de rapports automatisés pour les registres afin d'accélérer les essais cliniques.
En savoir plus sur les articles associés, notamment
Profitez de 300 $ de crédits gratuits et de plus de 20 produits Always Free pour commencer à créer des applications sur Google Cloud.