光学字符识别 (OCR) 教程

您将了解如何在 Google Cloud Platform 上执行光学字符识别 (OCR)。本教程演示如何将图片文件上传到 Google Cloud Storage、使用 Google Cloud Vision API 从图片中提取文本、使用 Google Cloud Translation API 翻译文本以及将译文保存回 Cloud Storage。Google Cloud Pub/Sub 用于将各种任务加入队列,并触发适当的 Cloud Functions 函数来执行这些任务。

目标

  • 编写和部署多个后台 Cloud Functions
  • 将图片上传到 Cloud Storage。
  • 提取、翻译和保存上传的图片中包含的文本。

费用

本教程使用 Cloud Platform 的可计费组件,包括:

  • Google Cloud Functions
  • Google Cloud Pub/Sub
  • Google Cloud Storage
  • Google Cloud Translation API
  • Google Cloud Vision API

您可使用价格计算器根据您的预计使用情况来估算费用。

Cloud Platform 新用户可能有资格申请免费试用

准备工作

  1. 登录您的 Google 帐号。

    如果您还没有 Google 帐号,请注册一个新帐号

  2. 在 Google Cloud Console 的项目选择器页面上,选择或创建一个 Google Cloud 项目。

    转到项目选择器页面

  3. 确保您的 Cloud 项目已启用结算功能。 了解如何确认您的项目是否已启用结算功能

  4. 启用 Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision API。

    启用 API

  5. 更新 gcloud 组件:
    gcloud components update
  6. 准备开发环境。

直观呈现数据流

OCR 教程应用中的数据流涉及以下几个步骤:

  1. 包含任何语言文本的图片都会上传到 Cloud Storage。
  2. 触发一个 Cloud Functions 函数,该函数使用 Vision API 来提取文本并检测源语言。
  3. 向 Cloud Pub/Sub 主题发布消息后,文本会被加入队列等待翻译。系统会针对与源语言不同的每种目标语言将翻译加入队列中。
  4. 如果目标语言与源语言匹配,系统会跳过翻译队列,然后将文本发送到结果队列,即另一个 Pub/Sub 主题。
  5. Cloud Functions 函数使用 Translation API 对翻译队列中的文本进行翻译。翻译后的结果将发送到结果队列。
  6. 另一个 Cloud Functions 函数会将结果队列中的译文保存到 Cloud Storage。
  7. 您可以在 Cloud Storage 中找到每个翻译的结果(采用 txt 文件形式)。

直观展示上述步骤可能有所帮助:

准备应用

  1. 创建一个 Cloud Storage 存储分区以向其中上传图片,其中 YOUR_IMAGE_BUCKET_NAME 是全局唯一的存储分区名称:

    gsutil mb gs://YOUR_IMAGE_BUCKET_NAME
    
  2. 创建一个 Cloud Storage 存储分区以将文本译文保存到该存储分区,其中 YOUR_RESULT_BUCKET_NAME 是全局唯一的存储分区名称:

    gsutil mb gs://YOUR_RESULT_BUCKET_NAME
    
  3. 创建一个 Cloud Pub/Sub 主题以向其发布翻译请求,其中 YOUR_TRANSLATE_TOPIC_NAME 是翻译请求主题的名称:

    gcloud pubsub topics create YOUR_TRANSLATE_TOPIC_NAME
    
  4. 创建一个 Cloud Pub/Sub 主题以向其发布已完成的翻译结果,其中 YOUR_RESULT_TOPIC_NAME 是翻译结果主题的名称:

    gcloud pubsub topics create YOUR_RESULT_TOPIC_NAME
    
  5. 将示例应用代码库克隆到本地机器:

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

    Go

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

  6. 切换到包含 Cloud Functions 函数示例代码的目录:

    Node.js

    cd nodejs-docs-samples/functions/ocr/app/

    Python

    cd python-docs-samples/functions/ocr/app/

    Go

    cd golang-samples/functions/ocr/app/

    Java

    cd java-docs-samples/functions/ocr/ocr-process-image/

了解代码

导入依赖项

应用必须导入多个依赖项才能与 Google Cloud Platform 服务进行通信:

Node.js

// Get a reference to the Pub/Sub component
const {PubSub} = require('@google-cloud/pubsub');
const pubsub = new PubSub();
// Get a reference to the Cloud Storage component
const {Storage} = require('@google-cloud/storage');
const storage = new Storage();

// Get a reference to the Cloud Vision API component
const Vision = require('@google-cloud/vision');
const vision = new Vision.ImageAnnotatorClient();

// Get a reference to the Translate API component
const {Translate} = require('@google-cloud/translate').v2;
const translate = new Translate();

Python

import base64
import json
import os

from google.cloud import pubsub_v1
from google.cloud import storage
from google.cloud import translate_v2 as translate
from google.cloud import vision

vision_client = vision.ImageAnnotatorClient()
translate_client = translate.Client()
publisher = pubsub_v1.PublisherClient()
storage_client = storage.Client()

project_id = os.environ["GCP_PROJECT"]

Go


// Package ocr contains Go samples for creating OCR
// (Optical Character Recognition) Cloud functions.
package ocr

import (
	"context"
	"fmt"
	"os"
	"strings"
	"time"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/storage"
	"cloud.google.com/go/translate"
	vision "cloud.google.com/go/vision/apiv1"
	"golang.org/x/text/language"
)

type ocrMessage struct {
	Text     string       `json:"text"`
	FileName string       `json:"fileName"`
	Lang     language.Tag `json:"lang"`
	SrcLang  language.Tag `json:"srcLang"`
}

// GCSEvent is the payload of a GCS event.
type GCSEvent struct {
	Bucket         string    `json:"bucket"`
	Name           string    `json:"name"`
	Metageneration string    `json:"metageneration"`
	ResourceState  string    `json:"resourceState"`
	TimeCreated    time.Time `json:"timeCreated"`
	Updated        time.Time `json:"updated"`
}

// PubSubMessage is the payload of a Pub/Sub event.
type PubSubMessage struct {
	Data []byte `json:"data"`
}

var (
	visionClient    *vision.ImageAnnotatorClient
	translateClient *translate.Client
	pubsubClient    *pubsub.Client
	storageClient   *storage.Client

	projectID      string
	resultBucket   string
	resultTopic    string
	toLang         []string
	translateTopic string
)

func setup(ctx context.Context) error {
	projectID = os.Getenv("GOOGLE_CLOUD_PROJECT")
	resultBucket = os.Getenv("RESULT_BUCKET")
	resultTopic = os.Getenv("RESULT_TOPIC")
	toLang = strings.Split(os.Getenv("TO_LANG"), ",")
	translateTopic = os.Getenv("TRANSLATE_TOPIC")

	var err error // Prevent shadowing clients with :=.

	if visionClient == nil {
		visionClient, err = vision.NewImageAnnotatorClient(ctx)
		if err != nil {
			return fmt.Errorf("vision.NewImageAnnotatorClient: %v", err)
		}
	}

	if translateClient == nil {
		translateClient, err = translate.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %v", err)
		}
	}

	if pubsubClient == nil {
		pubsubClient, err = pubsub.NewClient(ctx, projectID)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %v", err)
		}
	}

	if storageClient == nil {
		storageClient, err = storage.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("storage.NewClient: %v", err)
		}
	}
	return nil
}

Java

public class OcrProcessImage implements BackgroundFunction<GcsEvent> {
  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = System.getenv("GCP_PROJECT");
  private static final String TRANSLATE_TOPIC_NAME = System.getenv("TRANSLATE_TOPIC");
  private static final String[] TO_LANGS = System.getenv("TO_LANG").split(",");

  private static final Logger logger = Logger.getLogger(OcrProcessImage.class.getName());
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
  private Publisher publisher;

  public OcrProcessImage() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, TRANSLATE_TOPIC_NAME)).build();
  }
}

处理图片

以下函数会从 Cloud Storage 中读取一个上传的图片文件,并调用一个函数来检测该图片是否含有文本:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a file is uploaded to the Cloud Storage bucket you created
 * for uploading images.
 *
 * @param {object} event A Google Cloud Storage File object.
 */
exports.processImage = async event => {
  const {bucket, name} = event;

  if (!bucket) {
    throw new Error(
      'Bucket not provided. Make sure you have a "bucket" property in your request'
    );
  }
  if (!name) {
    throw new Error(
      'Filename not provided. Make sure you have a "name" property in your request'
    );
  }

  await detectText(bucket, name);
  console.log(`File ${name} processed.`);
};

Python

def process_image(file, context):
    """Cloud Function triggered by Cloud Storage when a file is changed.
    Args:
        file (dict): Metadata of the changed file, provided by the triggering
                                 Cloud Storage event.
        context (google.cloud.functions.Context): Metadata of triggering event.
    Returns:
        None; the output is written to stdout and Stackdriver Logging
    """
    bucket = validate_message(file, "bucket")
    name = validate_message(file, "name")

    detect_text(bucket, name)

    print("File {} processed.".format(file["name"]))

Go


package ocr

import (
	"context"
	"fmt"
	"log"
)

// ProcessImage is executed when a file is uploaded to the Cloud Storage bucket you
// created for uploading images. It runs detectText, which processes the image for text.
func ProcessImage(ctx context.Context, event GCSEvent) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %v", err)
	}
	if event.Bucket == "" {
		return fmt.Errorf("empty file.Bucket")
	}
	if event.Name == "" {
		return fmt.Errorf("empty file.Name")
	}
	if err := detectText(ctx, event.Bucket, event.Name); err != nil {
		return fmt.Errorf("detectText: %v", err)
	}
	log.Printf("File %s processed.", event.Name)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.DetectLanguageRequest;
import com.google.cloud.translate.v3.DetectLanguageResponse;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.GcsEvent;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

  @Override
  public void accept(GcsEvent gcsEvent, Context context) {

    // Validate parameters
    String bucket = gcsEvent.getBucket();
    if (bucket == null) {
      throw new IllegalArgumentException("Missing bucket parameter");
    }
    String filename = gcsEvent.getName();
    if (filename == null) {
      throw new IllegalArgumentException("Missing name parameter");
    }

    detectText(bucket, filename);
  }
}

以下函数使用 Cloud Vision API 从图片中提取文本,然后将文本加入队列中以进行翻译:

Node.js

/**
 * Detects the text in an image using the Google Vision API.
 *
 * @param {string} bucketName Cloud Storage bucket name.
 * @param {string} filename Cloud Storage file name.
 * @returns {Promise}
 */
const detectText = async (bucketName, filename) => {
  console.log(`Looking for text in image ${filename}`);
  const [textDetections] = await vision.textDetection(
    `gs://${bucketName}/${filename}`
  );
  const [annotation] = textDetections.textAnnotations;
  const text = annotation ? annotation.description : '';
  console.log('Extracted text from image:', text);

  let [translateDetection] = await translate.detect(text);
  if (Array.isArray(translateDetection)) {
    [translateDetection] = translateDetection;
  }
  console.log(
    `Detected language "${translateDetection.language}" for ${filename}`
  );

  // Submit a message to the bus for each language we're going to translate to
  const TO_LANGS = process.env.TO_LANG.split(',');
  const topicName = process.env.TRANSLATE_TOPIC;

  const tasks = TO_LANGS.map(lang => {
    const messageData = {
      text: text,
      filename: filename,
      lang: lang,
    };

    // Helper function that publishes translation result to a Pub/Sub topic
    // For more information on publishing Pub/Sub messages, see this page:
    //   https://cloud.google.com/pubsub/docs/publisher
    return publishResult(topicName, messageData);
  });

  return Promise.all(tasks);
};

Python

def detect_text(bucket, filename):
    print("Looking for text in image {}".format(filename))

    futures = []

    image = vision.Image(
        source=vision.ImageSource(gcs_image_uri=f"gs://{bucket}/{filename}")
    )
    text_detection_response = vision_client.text_detection(image=image)
    annotations = text_detection_response.text_annotations
    if len(annotations) > 0:
        text = annotations[0].description
    else:
        text = ""
    print("Extracted text {} from image ({} chars).".format(text, len(text)))

    detect_language_response = translate_client.detect_language(text)
    src_lang = detect_language_response["language"]
    print("Detected language {} for text {}.".format(src_lang, text))

    # Submit a message to the bus for each target language
    to_langs = os.environ["TO_LANG"].split(",")
    for target_lang in to_langs:
        topic_name = os.environ["TRANSLATE_TOPIC"]
        if src_lang == target_lang or src_lang == "und":
            topic_name = os.environ["RESULT_TOPIC"]
        message = {
            "text": text,
            "filename": filename,
            "lang": target_lang,
            "src_lang": src_lang,
        }
        message_data = json.dumps(message).encode("utf-8")
        topic_path = publisher.topic_path(project_id, topic_name)
        future = publisher.publish(topic_path, data=message_data)
        futures.append(future)
    for future in futures:
        future.result()

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"golang.org/x/text/language"
	visionpb "google.golang.org/genproto/googleapis/cloud/vision/v1"
)

// detectText detects the text in an image using the Google Vision API.
func detectText(ctx context.Context, bucketName, fileName string) error {
	log.Printf("Looking for text in image %v", fileName)
	maxResults := 1
	image := &visionpb.Image{
		Source: &visionpb.ImageSource{
			GcsImageUri: fmt.Sprintf("gs://%s/%s", bucketName, fileName),
		},
	}
	annotations, err := visionClient.DetectTexts(ctx, image, &visionpb.ImageContext{}, maxResults)
	if err != nil {
		return fmt.Errorf("DetectTexts: %v", err)
	}
	text := ""
	if len(annotations) > 0 {
		text = annotations[0].Description
	}
	if len(annotations) == 0 || len(text) == 0 {
		log.Printf("No text detected in image %q. Returning early.", fileName)
		return nil
	}
	log.Printf("Extracted text %q from image (%d chars).", text, len(text))

	detectResponse, err := translateClient.DetectLanguage(ctx, []string{text})
	if err != nil {
		return fmt.Errorf("DetectLanguage: %v", err)
	}
	if len(detectResponse) == 0 || len(detectResponse[0]) == 0 {
		return fmt.Errorf("DetectLanguage gave empty response")
	}
	srcLang := detectResponse[0][0].Language.String()
	log.Printf("Detected language %q for text %q.", srcLang, text)

	// Submit a message to the bus for each target language
	for _, targetLang := range toLang {
		topicName := translateTopic
		if srcLang == targetLang || srcLang == "und" { // detection returns "und" for undefined language
			topicName = resultTopic
		}
		targetTag, err := language.Parse(targetLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %v", err)
		}
		srcTag, err := language.Parse(srcLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %v", err)
		}
		message, err := json.Marshal(ocrMessage{
			Text:     text,
			FileName: fileName,
			Lang:     targetTag,
			SrcLang:  srcTag,
		})
		if err != nil {
			return fmt.Errorf("json.Marshal: %v", err)
		}
		topic := pubsubClient.Topic(topicName)
		ok, err := topic.Exists(ctx)
		if err != nil {
			return fmt.Errorf("Exists: %v", err)
		}
		if !ok {
			topic, err = pubsubClient.CreateTopic(ctx, topicName)
			if err != nil {
				return fmt.Errorf("CreateTopic: %v", err)
			}
		}
		msg := &pubsub.Message{
			Data: []byte(message),
		}
		if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
			return fmt.Errorf("Get: %v", err)
		}
	}
	return nil
}

Java

private void detectText(String bucket, String filename) {
  logger.info("Looking for text in image " + filename);

  List<AnnotateImageRequest> visionRequests = new ArrayList<>();
  String gcsPath = String.format("gs://%s/%s", bucket, filename);

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  Feature textFeature = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
  AnnotateImageRequest visionRequest =
      AnnotateImageRequest.newBuilder().addFeatures(textFeature).setImage(img).build();
  visionRequests.add(visionRequest);

  // Detect text in an image using the Cloud Vision API
  AnnotateImageResponse visionResponse;
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    visionResponse = client.batchAnnotateImages(visionRequests).getResponses(0);
    if (visionResponse == null || !visionResponse.hasFullTextAnnotation()) {
      logger.info(String.format("Image %s contains no text", filename));
      return;
    }

    if (visionResponse.hasError()) {
      // Log error
      logger.log(
          Level.SEVERE, "Error in vision API call: " + visionResponse.getError().getMessage());
      return;
    }
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a Cloud Function)
    logger.log(Level.SEVERE, "Error detecting text: " + e.getMessage(), e);
    return;
  }

  String text = visionResponse.getFullTextAnnotation().getText();
  logger.info("Extracted text from image: " + text);

  // Detect language using the Cloud Translation API
  DetectLanguageRequest languageRequest =
      DetectLanguageRequest.newBuilder()
          .setParent(LOCATION_NAME)
          .setMimeType("text/plain")
          .setContent(text)
          .build();
  DetectLanguageResponse languageResponse;
  try (TranslationServiceClient client = TranslationServiceClient.create()) {
    languageResponse = client.detectLanguage(languageRequest);
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a function)
    logger.log(Level.SEVERE, "Error detecting language: " + e.getMessage(), e);
    return;
  }

  if (languageResponse.getLanguagesCount() == 0) {
    logger.info("No languages were detected for text: " + text);
    return;
  }

  String languageCode = languageResponse.getLanguages(0).getLanguageCode();
  logger.info(String.format("Detected language %s for file %s", languageCode, filename));

  // Send a Pub/Sub translation request for every language we're going to translate to
  for (String targetLanguage : TO_LANGS) {
    logger.info("Sending translation request for language " + targetLanguage);
    OcrTranslateApiMessage message = new OcrTranslateApiMessage(text, filename, targetLanguage);
    ByteString byteStr = ByteString.copyFrom(message.toPubsubData());
    PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
    try {
      publisher.publish(pubsubApiMessage).get();
    } catch (InterruptedException | ExecutionException e) {
      // Log error
      logger.log(Level.SEVERE, "Error publishing translation request: " + e.getMessage(), e);
      return;
    }
  }
}

翻译文本

以下函数会翻译提取的文本,并将译文加入队列以保存回 Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the TRANSLATE_TOPIC environment variable. The function
 * translates text using the Google Translate API.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.translateText = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Translating text into ${lang}`);
  const [translation] = await translate.translate(text, lang);

  console.log('Translated text:', translation);

  const messageData = {
    text: translation,
    filename: filename,
    lang: lang,
  };

  await publishResult(process.env.RESULT_TOPIC, messageData);
  console.log(`Text translated to ${lang}`);
};

Python

def translate_text(event, context):
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    target_lang = validate_message(message, "lang")
    src_lang = validate_message(message, "src_lang")

    print("Translating text into {}.".format(target_lang))
    translated_text = translate_client.translate(
        text, target_language=target_lang, source_language=src_lang
    )
    topic_name = os.environ["RESULT_TOPIC"]
    message = {
        "text": translated_text["translatedText"],
        "filename": filename,
        "lang": target_lang,
    }
    message_data = json.dumps(message).encode("utf-8")
    topic_path = publisher.topic_path(project_id, topic_name)
    future = publisher.publish(topic_path, data=message_data)
    future.result()

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/translate"
)

// TranslateText is executed when a message is published to the Cloud Pub/Sub
// topic specified by the TRANSLATE_TOPIC environment variable, and translates
// the text using the Google Translate API.
func TranslateText(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("setup: %v", err)
	}
	if event.Data == nil {
		return fmt.Errorf("empty data")
	}
	var message ocrMessage
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %v", err)
	}

	log.Printf("Translating text into %s.", message.Lang.String())
	opts := translate.Options{
		Source: message.SrcLang,
	}
	translateResponse, err := translateClient.Translate(ctx, []string{message.Text}, message.Lang, &opts)
	if err != nil {
		return fmt.Errorf("Translate: %v", err)
	}
	if len(translateResponse) == 0 {
		return fmt.Errorf("Empty Translate response")
	}
	translatedText := translateResponse[0]

	messageData, err := json.Marshal(ocrMessage{
		Text:     translatedText.Text,
		FileName: message.FileName,
		Lang:     message.Lang,
		SrcLang:  message.SrcLang,
	})
	if err != nil {
		return fmt.Errorf("json.Marshal: %v", err)
	}

	topic := pubsubClient.Topic(resultTopic)
	ok, err := topic.Exists(ctx)
	if err != nil {
		return fmt.Errorf("Exists: %v", err)
	}
	if !ok {
		topic, err = pubsubClient.CreateTopic(ctx, resultTopic)
		if err != nil {
			return fmt.Errorf("CreateTopic: %v", err)
		}
	}
	msg := &pubsub.Message{
		Data: messageData,
	}
	if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
		return fmt.Errorf("Get: %v", err)
	}
	log.Printf("Sent translation: %q", translatedText.Text)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslateTextRequest;
import com.google.cloud.translate.v3.TranslateTextResponse;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.PubSubMessage;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OcrTranslateText implements BackgroundFunction<PubSubMessage> {
  private static final Logger logger = Logger.getLogger(OcrTranslateText.class.getName());

  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = getenv("GCP_PROJECT");
  private static final String RESULTS_TOPIC_NAME = getenv("RESULT_TOPIC");
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();

  private Publisher publisher;

  public OcrTranslateText() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, RESULTS_TOPIC_NAME)).build();
  }

  @Override
  public void accept(PubSubMessage pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    String targetLang = ocrMessage.getLang();
    logger.info("Translating text into " + targetLang);

    // Translate text to target language
    String text = ocrMessage.getText();
    TranslateTextRequest request =
        TranslateTextRequest.newBuilder()
            .setParent(LOCATION_NAME)
            .setMimeType("text/plain")
            .setTargetLanguageCode(targetLang)
            .addContents(text)
            .build();

    TranslateTextResponse response;
    try (TranslationServiceClient client = TranslationServiceClient.create()) {
      response = client.translateText(request);
    } catch (IOException e) {
      // Log error (since IOException cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error translating text: " + e.getMessage(), e);
      return;
    }
    if (response.getTranslationsCount() == 0) {
      return;
    }

    String translatedText = response.getTranslations(0).getTranslatedText();
    logger.info("Translated text: " + translatedText);

    // Send translated text to (subsequent) Pub/Sub topic
    String filename = ocrMessage.getFilename();
    OcrTranslateApiMessage translateMessage = new OcrTranslateApiMessage(
        translatedText, filename, targetLang);
    try {
      ByteString byteStr = ByteString.copyFrom(translateMessage.toPubsubData());
      PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();

      publisher.publish(pubsubApiMessage).get();
      logger.info("Text translated to " + targetLang);
    } catch (InterruptedException | ExecutionException e) {
      // Log error (since these exception types cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error publishing translation save request: " + e.getMessage(), e);
    }
  }

  // Avoid ungraceful deployment failures due to unset environment variables.
  // If you get this warning you should redeploy with the variable set.
  private static String getenv(String name) {
    String value = System.getenv(name);
    if (value == null) {
      logger.warning("Environment variable " + name + " was not set");
      value = "MISSING";
    }
    return value;
  }
}

保存译文

最后,以下函数会接收译文并将其保存回 Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the RESULT_TOPIC environment variable. The function saves
 * the data packet to a file in GCS.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.saveResult = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Received request to save file ${filename}`);

  const bucketName = process.env.RESULT_BUCKET;
  const newFilename = renameImageForSave(filename, lang);
  const file = storage.bucket(bucketName).file(newFilename);

  console.log(`Saving result to ${newFilename} in bucket ${bucketName}`);

  await file.save(text);
  console.log('File saved.');
};

Python

def save_result(event, context):
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    lang = validate_message(message, "lang")

    print("Received request to save file {}.".format(filename))

    bucket_name = os.environ["RESULT_BUCKET"]
    result_filename = "{}_{}.txt".format(filename, lang)
    bucket = storage_client.get_bucket(bucket_name)
    blob = bucket.blob(result_filename)

    print("Saving result to {} in bucket {}.".format(result_filename, bucket_name))

    blob.upload_from_string(text)

    print("File saved.")

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"
)

// SaveResult is executed when a message is published to the Cloud Pub/Sub topic
// specified by the RESULT_TOPIC environment vairable, and saves the data packet
// to a file in GCS.
func SaveResult(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %v", err)
	}
	var message ocrMessage
	if event.Data == nil {
		return fmt.Errorf("Empty data")
	}
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %v", err)
	}
	log.Printf("Received request to save file %q.", message.FileName)

	resultFilename := fmt.Sprintf("%s_%s.txt", message.FileName, message.Lang)
	bucket := storageClient.Bucket(resultBucket)

	log.Printf("Saving result to %q in bucket %q.", resultFilename, resultBucket)

	w := bucket.Object(resultFilename).NewWriter(ctx)
	defer w.Close()
	fmt.Fprint(w, message.Text)

	log.Printf("File saved.")
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import functions.eventpojos.PubSubMessage;
import java.nio.charset.StandardCharsets;
import java.util.logging.Logger;

public class OcrSaveResult implements BackgroundFunction<PubSubMessage> {
  // TODO<developer> set this environment variable
  private static final String RESULT_BUCKET = System.getenv("RESULT_BUCKET");

  private static final Storage STORAGE = StorageOptions.getDefaultInstance().getService();
  private static final Logger logger = Logger.getLogger(OcrSaveResult.class.getName());

  @Override
  public void accept(PubSubMessage pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    logger.info("Received request to save file " +  ocrMessage.getFilename());

    String newFileName = String.format(
        "%s_to_%s.txt", ocrMessage.getFilename(), ocrMessage.getLang());

    // Save file to RESULT_BUCKET with name newFileNaem
    logger.info(String.format("Saving result to %s in bucket %s", newFileName, RESULT_BUCKET));
    BlobInfo blobInfo = BlobInfo.newBuilder(BlobId.of(RESULT_BUCKET, newFileName)).build();
    STORAGE.create(blobInfo, ocrMessage.getText().getBytes(StandardCharsets.UTF_8));
    logger.info("File saved");
  }
}

部署函数

本部分介绍如何部署函数。

  1. 如需部署带有 Cloud Storage 触发器的图片处理函数,请在包含示例代码(如果是 Java,则为 pom.xml 文件)的目录中运行以下命令:

    Node.js

    gcloud functions deploy ocr-extract \
    --runtime nodejs10 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point processImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"
    您可以使用 --runtime 标志的以下值来指定偏好的 Node.js 版本:
    • nodejs10
    • nodejs12

    Python

    gcloud functions deploy ocr-extract \
    --runtime python37 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point process_image \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"
    您可以使用 --runtime 标志的以下值来指定偏好的 Python 版本:
    • python37
    • python38

    Go

    gcloud functions deploy ocr-extract \
    --runtime go111 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point ProcessImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"
    您可以使用 --runtime 标志的以下值来指定偏好的 Go 版本:
    • go111
    • go113

    Java

    gcloud functions deploy ocr-extract \
    --entry-point functions.OcrProcessImage \
    --runtime java11 \
    --memory 512MB \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    其中,YOUR_IMAGE_BUCKET_NAME 是您要将图片上传到的 Cloud Storage 存储分区的名称。

  2. 如需部署带有 Cloud Pub/Sub 触发器的文本翻译函数,请在包含示例代码(如果是 Java,则为 pom.xml 文件)的目录中运行以下命令:

    Node.js

    gcloud functions deploy ocr-translate \
    --runtime nodejs10 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Node.js 版本:
    • nodejs10
    • nodejs12

    Python

    gcloud functions deploy ocr-translate \
    --runtime python37 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translate_text \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Python 版本:
    • python37
    • python38

    Go

    gcloud functions deploy ocr-translate \
    --runtime go111 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point TranslateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Go 版本:
    • go111
    • go113

    Java

    gcloud functions deploy ocr-translate \
    --entry-point functions.OcrTranslateText \
    --runtime java11 \
    --memory 512MB \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

  3. 如需部署带有 Cloud Pub/Sub 触发器、将结果保存到 Cloud Storage 的函数,请在包含示例代码(如果是 Java,则为 pom.xml 文件)的目录中运行以下命令:

    Node.js

    gcloud functions deploy ocr-save \
    --runtime nodejs10 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point saveResult \
    --set-env-vars "RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Node.js 版本:
    • nodejs10
    • nodejs12

    Python

    gcloud functions deploy ocr-save \
    --runtime python37 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point save_result \
    --set-env-vars "RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Python 版本:
    • python37
    • python38

    Go

    gcloud functions deploy ocr-save \
    --runtime go111 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point SaveResult \
    --set-env-vars "RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"
    您可以使用 --runtime 标志的以下值来指定偏好的 Go 版本:
    • go111
    • go113

    Java

    gcloud functions deploy ocr-save \
    --entry-point functions.OcrSaveResult \
    --runtime java11 \
    --memory 512MB \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

上传图片

  1. 将一张图片上传到您的图片 Cloud Storage 存储分区:

    gsutil cp PATH_TO_IMAGE gs://YOUR_IMAGE_BUCKET_NAME
    

    其中

    • PATH_TO_IMAGE 是本地系统上的图片文件(其中包含文本)的路径。
    • YOUR_IMAGE_BUCKET_NAME 是您要向其中上传图片的存储分区的名称。

    您可以从示例项目中下载一张图片。

  2. 查看日志以确保执行已完成:

    gcloud functions logs read --limit 100
    
  3. 您可以在由配置文件中的 RESULT_BUCKET 值指定的 Cloud Storage 存储分区中查看保存的译文。

清理

为避免因本教程中使用的资源而导致您的 Google Cloud Platform 帐号产生费用,请执行以下操作:

删除项目

为了避免产生费用,最简单的方法是删除您为本教程创建的项目。

如需删除项目,请执行以下操作:

  1. 在 Cloud Console 中,转到管理资源页面。

    转到“管理资源”页面

  2. 在项目列表中,选择要删除的项目,然后点击删除
  3. 在对话框中输入项目 ID,然后点击关闭以删除项目。

删除 Cloud Functions 函数

删除 Cloud Functions 函数不会移除存储在 Cloud Storage 中的任何资源。

如需删除您在本教程中创建的 Cloud Functions 函数,请运行以下命令:

gcloud functions delete ocr-extract
gcloud functions delete ocr-translate
gcloud functions delete ocr-save

您也可以通过 Google Cloud Console 删除 Cloud Functions 函数。