Lecture CDC depuis Apache Iceberg avec le catalogue REST BigLake

Pour lire les événements de capture de données modifiées (CDC) à partir d'Apache Iceberg à l'aide du catalogue REST BigLake, utilisez le connecteur d'E/S géré Apache Beam.

Les E/S gérées sont compatibles avec les fonctionnalités suivantes pour Apache Iceberg :

Catalogues
  • Hadoop
  • Hive
  • Catalogues basés sur REST
  • Métastore BigQuery (nécessite le SDK Apache Beam 2.62.0 ou version ultérieure si vous n'utilisez pas l'exécuteur v2)
Fonctionnalités de lecture Lecture par lots
Fonctionnalités d'écriture

Pour les tables BigQuery pour Apache Iceberg, utilisez le connecteur BigQueryIO avec l'API BigQuery Storage. La table doit déjà exister. La création de tables dynamiques n'est pas prise en charge.

Limites

  1. La CDC Apache Iceberg n'est compatible qu'avec l'API gérée. Les fonctionnalités du service de transformations gérées ne sont pas encore activées. Attendez-vous à des modifications qui affectent la rétrocompatibilité
  2. L'API gérée CDC ne lit que les instantanés en mode ajout uniquement. Le CDC complet n'est pas encore disponible.

Prérequis

  1. Configurez BigLake. Configurez votre projet Google Cloud Platform avec les autorisations requises en suivant Utiliser BigLake Metastore avec le catalogue REST Iceberg. Assurez-vous de bien comprendre les limites du catalogue REST BigLake Iceberg décrites sur cette page.
  2. Créez une table Iceberg source. L'exemple présenté ici suppose que vous disposez d'une table Apache Iceberg. Pour en créer un, vous pouvez utiliser le pipeline présenté dans Écriture en flux continu dans Apache Iceberg avec le catalogue REST BigLake.

Dépendances

Ajoutez les dépendances suivantes au projet :

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.iceberg</groupId>
  <artifactId>iceberg-gcp</artifactId>
  <version>${iceberg.version}</version>
</dependency>

Exemple

L'exemple suivant illustre un pipeline de streaming qui lit les événements CDC à partir d'une table Apache Iceberg, agrège les clics des utilisateurs et écrit les résultats dans une autre table Apache Iceberg.

Java

Pour vous authentifier auprès de Dataflow, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.auth.oauth2.GoogleCredentials;
import com.google.common.collect.ImmutableMap;
import java.io.IOException;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.coders.RowCoder;
import org.apache.beam.sdk.extensions.gcp.options.GcpOptions;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.Row;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.joda.time.Duration;

/**
 * A streaming pipeline that reads CDC events from an Iceberg table, aggregates user clicks, and
 * writes the results to another Iceberg table. For more information on BigLake, 
 * see the documentation at https://cloud.google.com/bigquery/docs/blms-rest-catalog.
 *
 * <p>This pipeline can be used to process the output of {@link
 * ApacheIcebergRestCatalogStreamingWrite}.
 */
public class ApacheIcebergCdcRead {

  // Schema for the source table containing click events.
  public static final Schema SOURCE_SCHEMA =
      Schema.builder().addStringField("user_id").addInt64Field("click_count").build();

  // Schema for the destination table containing aggregated click counts.
  public static final Schema DESTINATION_SCHEMA =
      Schema.builder().addStringField("user_id").addInt64Field("total_clicks").build();

  /** Pipeline options for this example. */
  public interface Options extends GcpOptions {
    @Description("The source Iceberg table to read CDC events from")
    @Validation.Required
    String getSourceTable();

    void setSourceTable(String sourceTable);

    @Description("The destination Iceberg table to write aggregated results to")
    @Validation.Required
    String getDestinationTable();

    void setDestinationTable(String destinationTable);

    @Description("Warehouse location for the Iceberg catalog")
    @Validation.Required
    String getWarehouse();

    void setWarehouse(String warehouse);

    @Description("The URI for the REST catalog")
    @Default.String("https://biglake.googleapis.com/iceberg/v1beta/restcatalog")
    String getCatalogUri();

    void setCatalogUri(String value);

    @Description("The name of the Iceberg catalog")
    @Validation.Required
    String getCatalogName();

    void setCatalogName(String catalogName);
  }

  public static void main(String[] args) throws IOException {
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);

    // Note: The token expires in 1 hour. Users may need to re-run the pipeline.
    // Future updates to Iceberg and the BigLake Metastore will support token refreshing.
    Map<String, String> catalogProps =
        ImmutableMap.<String, String>builder()
            .put("type", "rest")
            .put("uri", options.getCatalogUri())
            .put("warehouse", options.getWarehouse())
            .put("header.x-goog-user-project", options.getProject())
            .put(
                "header.Authorization",
                "Bearer "
                    + GoogleCredentials.getApplicationDefault()
                        .createScoped("https://www.googleapis.com/auth/cloud-platform")
                        .refreshAccessToken()
                        .getTokenValue())
            .put("rest-metrics-reporting-enabled", "false")
            .build();

    Pipeline p = Pipeline.create(options);

    // Configure the Iceberg CDC read
    Map<String, Object> icebergReadConfig =
        ImmutableMap.<String, Object>builder()
            .put("table", options.getSourceTable())
            .put("catalog_name", options.getCatalogName())
            .put("catalog_properties", catalogProps)
            .put("streaming", Boolean.TRUE)
            .put("poll_interval_seconds", 20)
            .build();

    PCollection<Row> cdcEvents =
        p.apply("ReadFromIceberg", Managed.read(Managed.ICEBERG_CDC).withConfig(icebergReadConfig))
            .getSinglePCollection()
            .setRowSchema(SOURCE_SCHEMA);

    PCollection<Row> aggregatedRows =
        cdcEvents
            .apply("ApplyWindow", Window.into(FixedWindows.of(Duration.standardSeconds(30))))
            .apply(
                "ExtractUserAndCount",
                MapElements.into(
                        TypeDescriptors.kvs(TypeDescriptors.strings(), TypeDescriptors.longs()))
                    .via(
                        row -> {
                          String userId = row.getString("user_id");
                          Long clickCount = row.getInt64("click_count");
                          return KV.of(userId, clickCount == null ? 0L : clickCount);
                        }))
            .apply("SumClicksPerUser", Sum.longsPerKey())
            .apply(
                "FormatToRow",
                MapElements.into(TypeDescriptors.rows())
                    .via(
                        kv ->
                            Row.withSchema(DESTINATION_SCHEMA)
                                .withFieldValue("user_id", kv.getKey())
                                .withFieldValue("total_clicks", kv.getValue())
                                .build()))
            .setCoder(RowCoder.of(DESTINATION_SCHEMA));

    // Configure the Iceberg write
    Map<String, Object> icebergWriteConfig =
        ImmutableMap.<String, Object>builder()
            .put("table", options.getDestinationTable())
            .put("catalog_properties", catalogProps)
            .put("catalog_name", options.getCatalogName())
            .put("triggering_frequency_seconds", 30)
            .build();

    aggregatedRows.apply(
        "WriteToIceberg", Managed.write(Managed.ICEBERG).withConfig(icebergWriteConfig));

    p.run();
  }
}

Étapes suivantes