Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Nesta página, descrevemos como ler várias tabelas de um banco de dados do Microsoft SQL Server usando a fonte de várias tabelas.
Use a fonte de várias tabelas quando quiser que o pipeline leia a partir de várias tabelas. Se você quiser que seu pipeline leia a partir de uma única tabela, consulte Como ler uma tabela do SQL Server.
A origem de várias tabelas gera dados com vários esquemas e inclui um campo de nome da tabela que indica a tabela de onde vieram os dados. Ao usar a fonte de várias tabelas, use um dos coletores de várias tabelas, BigQuery Table ou arquivo multiGCS para criar um anexo da VLAN de monitoramento.
Antes de começar
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Ao usar o Cloud Data Fusion, você usa o console Google Cloud e a IU separada do Cloud Data Fusion. No console Google Cloud , é possível criar um projeto Google Cloud e criar e excluir instâncias do Cloud Data Fusion. Na interface do Cloud Data Fusion, é possível usar as várias páginas, como o Studio ou o Administrador, para acessar os recursos dele.
No console Google Cloud , acesse a página do Cloud Data Fusion.
Para abrir a instância no Cloud Data Fusion Studio, clique em Instâncias e em Ver instância.
Armazenar a senha do SQL Server como uma chave segura
Adicione a senha do SQL Server como uma chave segura para criptografar na instância do Cloud Data Fusion. Posteriormente neste guia, você garantirá que sua senha seja recuperada usando o Cloud KMS.
No canto superior direito de qualquer página do Cloud Data Fusion, clique em Administrador do sistema.
Clique na guia Configuration.
Clique em Fazer chamadas HTTP.
No menu suspenso, escolha PUT.
No campo do caminho, digite namespaces/NAMESPACE_ID/securekeys/PASSWORD.
No campo Corpo, digite {"data":"SQL_SERVER_PASSWORD"}.
Clique em Enviar.
Verifique se a Resposta recebida é o código de status 200.
Acessar o driver JDBC para SQL Server
Como usar o Hub
Na interface do Cloud Data Fusion, clique em Hub.
Na barra de pesquisa, digite Microsoft SQL Server JDBC Driver.
Clique em Driver JDBC do Microsoft SQL Server.
Clique em Fazer download. Siga as etapas de download mostradas.
Clique em Implantar. Faça o upload do arquivo JAR da etapa anterior.
Na interface do Cloud Data Fusion, clique em menuMenu e navegue até a página Studio.
Clique em addAdicionar.
Em Driver, clique em Fazer upload.
Faça o upload do arquivo JAR baixado na etapa 2.
Clique em Próxima.
Configure o driver inserindo um Nome.
No campo Nome da classe, insira com.microsoft.sqlserver.jdbc.SQLServerDriver.
Clique em Concluir.
Implante os plug-ins de várias tabelas
Na IU da Web do Cloud Data Fusion, clique em Hub.
Na barra de pesquisa, digite Multiple table plugins.
Clique em Múltiplos plug-ins de tabela.
Clique em Implantar.
Clique em Concluir.
Clique em Criar um pipeline.
Conectar-se ao SQL Server
Na interface do Cloud Data Fusion, clique em menuMenu e navegue até a página Studio.
No Studio, expanda o menu Origem.
Clique em Várias tabelas de banco de dados.
Coloque o ponteiro sobre o nó Várias tabelas de banco de dados e clique em Propriedades.
No campo Nome de referência, especifique um nome que será usado para identificar sua origem do SQL Server.
No campo String de conexão JDBC, insira a string de conexão JDBC. Por exemplo, jdbc:sqlserver://mydbhost:1433. Para mais informações, consulte
Como criar o URL de conexão.
Insira o Nome do plug-in JDBC, o Nome de usuário do banco de dados e a Senha do usuário do banco de dados.
Clique em Validate (Validar).
Clique em closeFechar.
Conectar-se ao BigQuery ou ao Cloud Storage
Na interface do Cloud Data Fusion, clique em menuMenu e navegue até a página Studio.
Expanda Gravador.
Clique em BigQuery Multi Table ou GCS Multi File.
Conecte o nó Várias tabelas de banco de dados com BigQuery Multi Table ou GCS Multi File.
Mantenha o ponteiro sobre o nó Várias tabelas do BigQuery ou Vários arquivos do GCS, clique em Propriedades e configure o coletor.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[[["\u003cp\u003eThis guide outlines the process of reading data from multiple Microsoft SQL Server tables using the Cloud Data Fusion Multi Table source.\u003c/p\u003e\n"],["\u003cp\u003eThe Multi Table source is used when a pipeline needs to read from multiple tables, in contrast to using a single table source, and it outputs data with multiple schemas while providing a table name field.\u003c/p\u003e\n"],["\u003cp\u003eTo use the Multi Table source, you will need to utilize one of the compatible multi table sinks, either BigQuery Multi Table or GCS Multi File.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves enabling APIs, creating a Cloud Data Fusion instance, securely storing your SQL Server password, getting the appropriate JDBC driver, and deploying multiple table plugins.\u003c/p\u003e\n"],["\u003cp\u003eConnecting to SQL Server and the chosen sink (BigQuery or Cloud Storage) is done through the Cloud Data Fusion Studio, and the guide provides steps to run a preview and deploy the pipeline.\u003c/p\u003e\n"]]],[],null,["# Read from multiple Microsoft SQL Server tables\n\n*** ** * ** ***\n\nThis page describes how to read multiple tables from a Microsoft SQL Server\ndatabase, using the **Multi Table** [source](/data-fusion/docs/concepts/overview#source).\nUse the Multi Table source when you want your pipeline to read from\nmultiple tables. If you want your pipeline to read from a single table, see\n[Reading from a SQL Server table](/data-fusion/docs/how-to/reading-from-sqlserver).\n\nThe Multi Table source outputs data with multiple schemas and includes a\ntable name field that indicates the table from which the data came. When\nusing the Multi Table source, use one of the multi table [sinks](/data-fusion/docs/concepts/overview#sink),\n**BigQuery Multi Table** or **GCS Multi File**.\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Cloud Data Fusion, Cloud Storage, BigQuery, and Dataproc APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=datafusion.googleapis.com,bigquery.googleapis.com,storage.googleapis.com,dataproc.googleapis.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Cloud Data Fusion, Cloud Storage, BigQuery, and Dataproc APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=datafusion.googleapis.com,bigquery.googleapis.com,storage.googleapis.com,dataproc.googleapis.com)\n\n1.\n\n\n Enable the Cloud Data Fusion, Cloud Storage, BigQuery, and Dataproc APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=datafusion.googleapis.com,bigquery.googleapis.com,storage.googleapis.com,dataproc.googleapis.com)\n2. [Create a Cloud Data Fusion instance](/data-fusion/docs/how-to/create-instance).\n3. Ensure that your SQL Server database can accept connections from Cloud Data Fusion. To do this securely, we recommend that you [create a private\n Cloud Data Fusion instance](/data-fusion/docs/how-to/create-private-ip).\n\n### View your Cloud Data Fusion instance\n\nWhen using Cloud Data Fusion, you use both the Google Cloud console\nand the separate Cloud Data Fusion UI. In the Google Cloud console, you\ncan create a Google Cloud project, and create and delete\nCloud Data Fusion instances. In the Cloud Data Fusion UI, you can use\nthe various pages, such as **Studio** or **Wrangler**, to use\nCloud Data Fusion features.\n\n1. In the Google Cloud console, go to the Cloud Data Fusion page.\n\n2. To open the instance in the Cloud Data Fusion Studio,\n click **Instances** , and then click **View instance**.\n\n[Go to Instances](https://console.cloud.google.com/data-fusion/locations/-/instances) \n\nStore your SQL Server password as a secure key\n----------------------------------------------\n\nAdd your SQL Server password as a secure key to encrypt on your\nCloud Data Fusion instance. Later in this guide, you will ensure that\nyour password is retrieved using [Cloud KMS](/kms/docs).\n\n1. In the top-right corner of any Cloud Data Fusion page, click **System\n Admin**.\n\n2. Click the **Configuration** tab.\n\n3. Click **Make HTTP Calls**.\n\n \u003cbr /\u003e\n\n4. In the dropdown menu, choose **PUT**.\n\n5. In the path field, enter `namespaces/`\u003cvar translate=\"no\"\u003eNAMESPACE_ID\u003c/var\u003e`/securekeys/`\u003cvar translate=\"no\"\u003ePASSWORD\u003c/var\u003e.\n\n6. In the **Body** field, enter `{\"data\":\"`\u003cvar translate=\"no\"\u003eSQL_SERVER_PASSWORD\u003c/var\u003e`\"}`.\n\n7. Click **Send**.\n\nEnsure that the **Response** you get is status code `200`.\n\nGet the JDBC driver for SQL Server\n----------------------------------\n\n### Using the Hub\n\n1. In the Cloud Data Fusion UI, click **Hub**.\n\n2. In the search bar, enter `Microsoft SQL Server JDBC Driver`.\n\n3. Click **Microsoft SQL Server JDBC Driver**.\n\n4. Click **Download**. Follow the download steps shown.\n\n5. Click **Deploy**. Upload the JAR file from the previous step.\n\n6. Click **Finish**.\n\n### Using Studio\n\n1. Visit [Microsoft.com](https://www.microsoft.com/en-us/download/details.aspx?id=11774).\n\n2. Choose your download and click **Download**.\n\n3. In the Cloud Data Fusion UI, click menu\n **Menu** and navigate to the **Studio** page.\n\n4. Click add **Add**.\n\n5. Under **Driver** , click **Upload**.\n\n6. Upload the JAR file downloaded in step 2.\n\n7. Click **Next**.\n\n8. Configure the driver by entering a **Name**.\n\n9. In the **Class name** field, enter `com.microsoft.sqlserver.jdbc.SQLServerDriver`.\n\n10. Click **Finish**.\n\nDeploy the Multiple Table Plugins\n---------------------------------\n\n1. In the Cloud Data Fusion web UI, click **Hub**.\n\n2. In the search bar, enter `Multiple table plugins`.\n\n3. Click **Multiple Table Plugins**.\n\n4. Click **Deploy**.\n\n5. Click **Finish**.\n\n6. Click **Create a Pipeline**.\n\nConnect to SQL Server\n---------------------\n\n1. In the Cloud Data Fusion UI, click menu\n **Menu** and navigate to the **Studio** page.\n\n2. In **Studio** , expand the **Source** menu.\n\n3. Click **Multiple Database Tables**.\n\n4. Hold the pointer over the **Multiple Database Tables** node and click\n **Properties**.\n\n5. In the **Reference name** field, specify a reference name that will be used to\n identify your SQL Server source.\n\n6. In the **JDBC Connection String** field, enter the JDBC connection string. For\n example, `jdbc:sqlserver://mydbhost:1433`. For more information, see\n [Building the connection URL](https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url).\n\n7. Enter the **JDBC Plugin Name** , **Database User Name** , and\n **Database User Password**.\n\n8. Click **Validate**.\n\n9. Click close **Close**.\n\nConnect to BigQuery or Cloud Storage\n------------------------------------\n\n1. In the Cloud Data Fusion UI, click menu\n **Menu** and navigate to the **Studio** page.\n\n2. Expand **Sink**.\n\n3. Click **BigQuery Multi Table** or **GCS Multi File**.\n\n4. Connect the **Multiple Database Tables** node with **BigQuery Multi Table**\n or **GCS Multi File**.\n\n5. Hold the pointer over the **BigQuery Multi Table**\n or **GCS Multi File** node, click **Properties**, and configure the sink.\n\n For more information, see [Google BigQuery Multi Table Sink](https://cdap.atlassian.net/wiki/spaces/DOCS/pages/464912385/Google+BigQuery+Multi+Table+Sink) and [Google Cloud Storage Multi File Sink](https://cdap.atlassian.net/wiki/spaces/DOCS/pages/464945223/Google+Cloud+Storage+Multi+File+Sink).\n6. Click **Validate**.\n\n7. Click close **Close**.\n\nRun preview of the pipeline\n---------------------------\n\n1. In the Cloud Data Fusion UI, click menu\n **Menu** and navigate to the **Studio** page.\n\n2. Click **Preview**.\n\n3. Click **Run**. Wait for the preview to finish successfully.\n\nDeploy the pipeline\n-------------------\n\n1. In the Cloud Data Fusion UI, click menu\n **Menu** and navigate to the **Studio** page.\n\n2. Click **Deploy**.\n\nRun the pipeline\n----------------\n\n1. In the Cloud Data Fusion UI,\n click menu **Menu**.\n\n2. Click **List**.\n\n3. Click the pipeline.\n\n4. On the pipeline details page, click **Run**.\n\nWhat's next\n-----------\n\n- Learn more about [Cloud Data Fusion](/data-fusion/docs/concepts/overview).\n- Follow one of the [tutorials](/data-fusion/docs/tutorials)."]]