Google Kubernetes Engine 연산자 사용

Cloud Composer 1 | Cloud Composer 2

이 페이지에서는 Google Kubernetes Engine 연산자를 사용하여 Google Kubernetes Engine에서 클러스터를 만들고 이러한 클러스터에서 Kubernetes 포드를 실행하는 방법을 설명합니다.

Google Kubernetes Engine 연산자는 지정된 클러스터에서 Kubernetes 포드를 실행합니다. 이 클러스터는 환경과 관련이 없는 별도의 클러스터일 수 있습니다. 이와 달리 KubernetesPodOperator는 환경의 클러스터에서 Kubernetes 포드를 실행합니다.

이 페이지에서는 GKECreateClusterOperator로 Google Kubernetes Engine 클러스터를 만들고, 다음 구성과 함께 GKEStartPodOperator를 사용하고, 나중에 GKEDeleteClusterOperator를 사용하여 삭제하는 예시 DAG를 설명합니다.

시작하기 전에

최신 버전의 Cloud Composer를 사용하는 것이 좋습니다. 최소한 이 버전은 지원 중단 및 지원 정책의 일부로 지원되어야 합니다.

GKE 연산자 구성

이 예시를 따르려면 전체 gke_operator.py 파일을 사용자 환경의 dags/ 폴더에 넣거나 DAG에 관련성이 높은 코드를 추가합니다.

클러스터 만들기

여기에 표시된 코드는 각각 하나의 노드가 있는 두 개의 노드 풀(pool-0pool-1)이 있는 Google Kubernetes Engine 클러스터를 만듭니다. 필요한 경우 body의 일부로 Google Kubernetes Engine API에서 다른 매개변수를 설정할 수 있습니다.

Airflow 2

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
CLUSTER = {
    "name": CLUSTER_NAME,
    "node_pools": [
        {"name": "pool-0", "initial_node_count": 1},
        {"name": "pool-1", "initial_node_count": 1},
    ],
}
create_cluster = GKECreateClusterOperator(
    task_id="create_cluster",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    body=CLUSTER,
)

Airflow 1

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1}
create_cluster = GKECreateClusterOperator(
    task_id="create_cluster",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    body=CLUSTER,
)
# Using the BashOperator to create node pools is a workaround
# In Airflow 2, because of https://github.com/apache/airflow/pull/17820
# Node pool creation can be done using the GKECreateClusterOperator

create_node_pools = BashOperator(
    task_id="create_node_pools",
    bash_command=f"gcloud container node-pools create pool-0 \
                    --cluster {CLUSTER_NAME} \
                    --num-nodes 1 \
                    --zone {CLUSTER_ZONE} \
                    && gcloud container node-pools create pool-1 \
                    --cluster {CLUSTER_NAME} \
                    --num-nodes 1 \
                    --zone {CLUSTER_ZONE}",
)

클러스터에서 워크로드 실행

다음 섹션에서는 예시의 각 GKEStartPodOperator 구성에 대해 설명합니다. 각 구성 변수에 대한 자세한 내용은 GKE 연산자의 Airflow 참조를 확인하세요.

Airflow 2



from airflow import models
from airflow.providers.google.cloud.operators.kubernetes_engine import (
    GKECreateClusterOperator,
    GKEDeleteClusterOperator,
    GKEStartPodOperator,
)

from airflow.utils.dates import days_ago

with models.DAG(
    "example_gcp_gke",
    schedule_interval=None,  # Override to match your needs
    start_date=days_ago(1),
    tags=["example"],
) as dag:

    # TODO(developer): update with your values
    PROJECT_ID = "my-project-id"
    CLUSTER_ZONE = "us-west1-a"
    CLUSTER_NAME = "example-cluster"
    CLUSTER = {
        "name": CLUSTER_NAME,
        "node_pools": [
            {"name": "pool-0", "initial_node_count": 1},
            {"name": "pool-1", "initial_node_count": 1},
        ],
    }
    create_cluster = GKECreateClusterOperator(
        task_id="create_cluster",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        body=CLUSTER,
    )

    kubernetes_min_pod = GKEStartPodOperator(
        # The ID specified for the task.
        task_id="pod-ex-minimum",
        # Name of task you want to run, used to generate Pod ID.
        name="pod-ex-minimum",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # The namespace to run within Kubernetes, default namespace is
        # `default`. There is the potential for the resource starvation of
        # Airflow workers and scheduler within the Cloud Composer environment,
        # the recommended solution is to increase the amount of nodes in order
        # to satisfy the computing requirements. Alternatively, launching pods
        # into a custom namespace will stop fighting over resources.
        namespace="default",
        # Docker image specified. Defaults to hub.docker.com, but any fully
        # qualified URLs will point to a custom repository. Supports private
        # gcr.io images if the Composer Environment is under the same
        # project-id as the gcr.io images and the service account that Composer
        # uses has permission to access the Google Container Registry
        # (the default service account has permission)
        image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
    )

    kubenetes_template_ex = GKEStartPodOperator(
        task_id="ex-kube-templates",
        name="ex-kube-templates",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="bash",
        # All parameters below are able to be templated with jinja -- cmds,
        # arguments, env_vars, and config_file. For more information visit:
        # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # DS in jinja is the execution date as YYYY-MM-DD, this docker image
        # will echo the execution date. Arguments to the entrypoint. The docker
        # image's CMD is used if this is not provided. The arguments parameter
        # is templated.
        arguments=["{{ ds }}"],
        # The var template variable allows you to access variables defined in
        # Airflow UI. In this case we are getting the value of my_value and
        # setting the environment variable `MY_VALUE`. The pod will fail if
        # `my_value` is not set in the Airflow UI.
        env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
    )

    kubernetes_affinity_ex = GKEStartPodOperator(
        task_id="ex-pod-affinity",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        name="ex-pod-affinity",
        namespace="default",
        image="perl",
        cmds=["perl"],
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # affinity allows you to constrain which nodes your pod is eligible to
        # be scheduled on, based on labels on the node. In this case, if the
        # label 'cloud.google.com/gke-nodepool' with value
        # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
        # nodes, it will fail to schedule.
        affinity={
            "nodeAffinity": {
                # requiredDuringSchedulingIgnoredDuringExecution means in order
                # for a pod to be scheduled on a node, the node must have the
                # specified labels. However, if labels on a node change at
                # runtime such that the affinity rules on a pod are no longer
                # met, the pod will still continue to run on the node.
                "requiredDuringSchedulingIgnoredDuringExecution": {
                    "nodeSelectorTerms": [
                        {
                            "matchExpressions": [
                                {
                                    # When nodepools are created in Google Kubernetes
                                    # Engine, the nodes inside of that nodepool are
                                    # automatically assigned the label
                                    # 'cloud.google.com/gke-nodepool' with the value of
                                    # the nodepool's name.
                                    "key": "cloud.google.com/gke-nodepool",
                                    "operator": "In",
                                    # The label key's value that pods can be scheduled
                                    # on.
                                    "values": [
                                        "pool-1",
                                    ],
                                }
                            ]
                        }
                    ]
                }
            }
        },
    )
    kubernetes_full_pod = GKEStartPodOperator(
        task_id="ex-all-configs",
        name="full",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="perl",
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["perl"],
        # Arguments to the entrypoint. The docker image's CMD is used if this
        # is not provided. The arguments parameter is templated.
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # The secrets to pass to Pod, the Pod will fail to create if the
        # secrets you specify in a Secret object do not exist in Kubernetes.
        secrets=[],
        # Labels to apply to the Pod.
        labels={"pod-label": "label-name"},
        # Timeout to start up the Pod, default is 120.
        startup_timeout_seconds=120,
        # The environment variables to be initialized in the container
        # env_vars are templated.
        env_vars={"EXAMPLE_VAR": "/example/value"},
        # If true, logs stdout output of container. Defaults to True.
        get_logs=True,
        # Determines when to pull a fresh image, if 'IfNotPresent' will cause
        # the Kubelet to skip pulling an image if it already exists. If you
        # want to always pull a new image, set it to 'Always'.
        image_pull_policy="Always",
        # Annotations are non-identifying metadata you can attach to the Pod.
        # Can be a large range of data, and can include characters that are not
        # permitted by labels.
        annotations={"key1": "value1"},
        # Resource specifications for Pod, this will allow you to set both cpu
        # and memory limits and requirements.
        # Prior to Airflow 1.10.4, resource specifications were
        # passed as a Pod Resources Class object,
        # If using this example on a version of Airflow prior to 1.10.4,
        # import the "pod" package from airflow.contrib.kubernetes and use
        # resources = pod.Resources() instead passing a dict
        # For more info see:
        # https://github.com/apache/airflow/pull/4551
        resources={"limit_memory": "250M", "limit_cpu": "100m"},
        # If true, the content of /airflow/xcom/return.json from container will
        # also be pushed to an XCom when the container ends.
        do_xcom_push=False,
        # List of Volume objects to pass to the Pod.
        volumes=[],
        # List of VolumeMount objects to pass to the Pod.
        volume_mounts=[],
        # Affinity determines which nodes the Pod can run on based on the
        # config. For more information see:
        # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
        affinity={},
    )
    delete_cluster = GKEDeleteClusterOperator(
        task_id="delete_cluster",
        name=CLUSTER_NAME,
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
    )

    create_cluster >> kubernetes_min_pod >> delete_cluster
    create_cluster >> kubernetes_full_pod >> delete_cluster
    create_cluster >> kubernetes_affinity_ex >> delete_cluster
    create_cluster >> kubenetes_template_ex >> delete_cluster

Airflow 1



from airflow import models
from airflow.operators.bash_operator import BashOperator
from airflow.providers.google.cloud.operators.kubernetes_engine import (
    GKECreateClusterOperator,
    GKEDeleteClusterOperator,
    GKEStartPodOperator,
)
from airflow.utils.dates import days_ago

with models.DAG(
    "example_gcp_gke",
    schedule_interval=None,  # Override to match your needs
    start_date=days_ago(1),
    tags=["example"],
) as dag:

    # TODO(developer): update with your values
    PROJECT_ID = "my-project-id"
    CLUSTER_ZONE = "us-west1-a"
    CLUSTER_NAME = "example-cluster"
    CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1}
    create_cluster = GKECreateClusterOperator(
        task_id="create_cluster",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        body=CLUSTER,
    )
    # Using the BashOperator to create node pools is a workaround
    # In Airflow 2, because of https://github.com/apache/airflow/pull/17820
    # Node pool creation can be done using the GKECreateClusterOperator

    create_node_pools = BashOperator(
        task_id="create_node_pools",
        bash_command=f"gcloud container node-pools create pool-0 \
                        --cluster {CLUSTER_NAME} \
                        --num-nodes 1 \
                        --zone {CLUSTER_ZONE} \
                        && gcloud container node-pools create pool-1 \
                        --cluster {CLUSTER_NAME} \
                        --num-nodes 1 \
                        --zone {CLUSTER_ZONE}",
    )

    kubernetes_min_pod = GKEStartPodOperator(
        # The ID specified for the task.
        task_id="pod-ex-minimum",
        # Name of task you want to run, used to generate Pod ID.
        name="pod-ex-minimum",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # The namespace to run within Kubernetes, default namespace is
        # `default`. There is the potential for the resource starvation of
        # Airflow workers and scheduler within the Cloud Composer environment,
        # the recommended solution is to increase the amount of nodes in order
        # to satisfy the computing requirements. Alternatively, launching pods
        # into a custom namespace will stop fighting over resources.
        namespace="default",
        # Docker image specified. Defaults to hub.docker.com, but any fully
        # qualified URLs will point to a custom repository. Supports private
        # gcr.io images if the Composer Environment is under the same
        # project-id as the gcr.io images and the service account that Composer
        # uses has permission to access the Google Container Registry
        # (the default service account has permission)
        image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
    )

    kubenetes_template_ex = GKEStartPodOperator(
        task_id="ex-kube-templates",
        name="ex-kube-templates",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="bash",
        # All parameters below are able to be templated with jinja -- cmds,
        # arguments, env_vars, and config_file. For more information visit:
        # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # DS in jinja is the execution date as YYYY-MM-DD, this docker image
        # will echo the execution date. Arguments to the entrypoint. The docker
        # image's CMD is used if this is not provided. The arguments parameter
        # is templated.
        arguments=["{{ ds }}"],
        # The var template variable allows you to access variables defined in
        # Airflow UI. In this case we are getting the value of my_value and
        # setting the environment variable `MY_VALUE`. The pod will fail if
        # `my_value` is not set in the Airflow UI.
        env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
    )

    kubernetes_affinity_ex = GKEStartPodOperator(
        task_id="ex-pod-affinity",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        name="ex-pod-affinity",
        namespace="default",
        image="perl",
        cmds=["perl"],
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # affinity allows you to constrain which nodes your pod is eligible to
        # be scheduled on, based on labels on the node. In this case, if the
        # label 'cloud.google.com/gke-nodepool' with value
        # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
        # nodes, it will fail to schedule.
        affinity={
            "nodeAffinity": {
                # requiredDuringSchedulingIgnoredDuringExecution means in order
                # for a pod to be scheduled on a node, the node must have the
                # specified labels. However, if labels on a node change at
                # runtime such that the affinity rules on a pod are no longer
                # met, the pod will still continue to run on the node.
                "requiredDuringSchedulingIgnoredDuringExecution": {
                    "nodeSelectorTerms": [
                        {
                            "matchExpressions": [
                                {
                                    # When nodepools are created in Google Kubernetes
                                    # Engine, the nodes inside of that nodepool are
                                    # automatically assigned the label
                                    # 'cloud.google.com/gke-nodepool' with the value of
                                    # the nodepool's name.
                                    "key": "cloud.google.com/gke-nodepool",
                                    "operator": "In",
                                    # The label key's value that pods can be scheduled
                                    # on.
                                    "values": [
                                        "pool-1",
                                    ],
                                }
                            ]
                        }
                    ]
                }
            }
        },
    )
    kubernetes_full_pod = GKEStartPodOperator(
        task_id="ex-all-configs",
        name="full",
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="perl",
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["perl"],
        # Arguments to the entrypoint. The docker image's CMD is used if this
        # is not provided. The arguments parameter is templated.
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # The secrets to pass to Pod, the Pod will fail to create if the
        # secrets you specify in a Secret object do not exist in Kubernetes.
        secrets=[],
        # Labels to apply to the Pod.
        labels={"pod-label": "label-name"},
        # Timeout to start up the Pod, default is 120.
        startup_timeout_seconds=120,
        # The environment variables to be initialized in the container
        # env_vars are templated.
        env_vars={"EXAMPLE_VAR": "/example/value"},
        # If true, logs stdout output of container. Defaults to True.
        get_logs=True,
        # Determines when to pull a fresh image, if 'IfNotPresent' will cause
        # the Kubelet to skip pulling an image if it already exists. If you
        # want to always pull a new image, set it to 'Always'.
        image_pull_policy="Always",
        # Annotations are non-identifying metadata you can attach to the Pod.
        # Can be a large range of data, and can include characters that are not
        # permitted by labels.
        annotations={"key1": "value1"},
        # Resource specifications for Pod, this will allow you to set both cpu
        # and memory limits and requirements.
        # Prior to Airflow 1.10.4, resource specifications were
        # passed as a Pod Resources Class object,
        # If using this example on a version of Airflow prior to 1.10.4,
        # import the "pod" package from airflow.contrib.kubernetes and use
        # resources = pod.Resources() instead passing a dict
        # For more info see:
        # https://github.com/apache/airflow/pull/4551
        resources={"limit_memory": "250M", "limit_cpu": "100m"},
        # If true, the content of /airflow/xcom/return.json from container will
        # also be pushed to an XCom when the container ends.
        do_xcom_push=False,
        # List of Volume objects to pass to the Pod.
        volumes=[],
        # List of VolumeMount objects to pass to the Pod.
        volume_mounts=[],
        # Affinity determines which nodes the Pod can run on based on the
        # config. For more information see:
        # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
        affinity={},
    )
    delete_cluster = GKEDeleteClusterOperator(
        task_id="delete_cluster",
        name=CLUSTER_NAME,
        project_id=PROJECT_ID,
        location=CLUSTER_ZONE,
    )

    create_cluster >> create_node_pools >> kubernetes_min_pod >> delete_cluster
    create_cluster >> create_node_pools >> kubernetes_full_pod >> delete_cluster
    create_cluster >> create_node_pools >> kubernetes_affinity_ex >> delete_cluster
    create_cluster >> create_node_pools >> kubenetes_template_ex >> delete_cluster

최소 구성

GKE 클러스터에서 GKEStartPodOperator로 포드를 실행하려면 project_id, location, cluster_name, name,namespace, image, task_id 옵션만 필요합니다.

DAG에 다음 코드 스니펫을 배치하면 이전에 나열된 매개변수가 정의되고 유효한 경우 pod-ex-minimum 태스크가 성공합니다.

Airflow 2

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_min_pod = GKEStartPodOperator(
    # The ID specified for the task.
    task_id="pod-ex-minimum",
    # Name of task you want to run, used to generate Pod ID.
    name="pod-ex-minimum",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # The namespace to run within Kubernetes, default namespace is
    # `default`. There is the potential for the resource starvation of
    # Airflow workers and scheduler within the Cloud Composer environment,
    # the recommended solution is to increase the amount of nodes in order
    # to satisfy the computing requirements. Alternatively, launching pods
    # into a custom namespace will stop fighting over resources.
    namespace="default",
    # Docker image specified. Defaults to hub.docker.com, but any fully
    # qualified URLs will point to a custom repository. Supports private
    # gcr.io images if the Composer Environment is under the same
    # project-id as the gcr.io images and the service account that Composer
    # uses has permission to access the Google Container Registry
    # (the default service account has permission)
    image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
)

Airflow 1

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_min_pod = GKEStartPodOperator(
    # The ID specified for the task.
    task_id="pod-ex-minimum",
    # Name of task you want to run, used to generate Pod ID.
    name="pod-ex-minimum",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # The namespace to run within Kubernetes, default namespace is
    # `default`. There is the potential for the resource starvation of
    # Airflow workers and scheduler within the Cloud Composer environment,
    # the recommended solution is to increase the amount of nodes in order
    # to satisfy the computing requirements. Alternatively, launching pods
    # into a custom namespace will stop fighting over resources.
    namespace="default",
    # Docker image specified. Defaults to hub.docker.com, but any fully
    # qualified URLs will point to a custom repository. Supports private
    # gcr.io images if the Composer Environment is under the same
    # project-id as the gcr.io images and the service account that Composer
    # uses has permission to access the Google Container Registry
    # (the default service account has permission)
    image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
)

템플릿 구성

Airflow는 Jinja 템플릿 사용을 지원합니다. 연산자와 함께 필수 변수(task_id, name, namespace, image)를 선언해야 합니다. 다음 예시와 같이 Jinja를 사용하여 다른 모든 매개변수(cmds, arguments, env_vars)를 템플릿으로 만들 수 있습니다.

DAG 또는 사용자 환경을 변경하지 않으면 ex-kube-templates 태스크가 실패합니다. 이 DAG가 성공하도록 my_value라는 Airflow 변수를 설정합니다.

gcloud 또는 Airflow UI를 통해 my_value를 설정하려면 다음 안내를 따릅니다.

gcloud

Airflow 2의 경우 다음 명령어를 입력합니다.

gcloud composer environments run ENVIRONMENT \
    --location LOCATION \
    variables set -- \
    my_value example_value

Airflow 1의 경우 다음 명령어를 입력합니다.

gcloud composer environments run ENVIRONMENT \
    --location LOCATION \
    variables -- \
    --set my_value example_value

다음과 같이 바꿉니다.

  • ENVIRONMENT을 환경 이름으로 바꿉니다.
  • LOCATION: 환경이 위치한 Compute Engine 리전입니다.

Airflow 2 UI

  1. 툴바에서 관리 > 변수를 선택합니다.

  2. 목록 변수 페이지에서 새 레코드 추가를 클릭합니다.

  3. 변수 추가 페이지에서 다음 정보를 입력합니다.

    • 키: my_value
    • Val: example_value
  4. 저장을 클릭합니다.

Airflow 1 UI

  1. 툴바에서 관리 > 변수를 선택합니다.

  2. 변수 페이지에서 만들기 탭을 클릭합니다.

  3. 변수 페이지에서 다음 정보를 입력합니다.

    • 키: my_value
    • Val: example_value
  4. 저장을 클릭합니다.

템플릿 구성

Airflow 2

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubenetes_template_ex = GKEStartPodOperator(
    task_id="ex-kube-templates",
    name="ex-kube-templates",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="bash",
    # All parameters below are able to be templated with jinja -- cmds,
    # arguments, env_vars, and config_file. For more information visit:
    # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # DS in jinja is the execution date as YYYY-MM-DD, this docker image
    # will echo the execution date. Arguments to the entrypoint. The docker
    # image's CMD is used if this is not provided. The arguments parameter
    # is templated.
    arguments=["{{ ds }}"],
    # The var template variable allows you to access variables defined in
    # Airflow UI. In this case we are getting the value of my_value and
    # setting the environment variable `MY_VALUE`. The pod will fail if
    # `my_value` is not set in the Airflow UI.
    env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
)

Airflow 1

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubenetes_template_ex = GKEStartPodOperator(
    task_id="ex-kube-templates",
    name="ex-kube-templates",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="bash",
    # All parameters below are able to be templated with jinja -- cmds,
    # arguments, env_vars, and config_file. For more information visit:
    # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # DS in jinja is the execution date as YYYY-MM-DD, this docker image
    # will echo the execution date. Arguments to the entrypoint. The docker
    # image's CMD is used if this is not provided. The arguments parameter
    # is templated.
    arguments=["{{ ds }}"],
    # The var template variable allows you to access variables defined in
    # Airflow UI. In this case we are getting the value of my_value and
    # setting the environment variable `MY_VALUE`. The pod will fail if
    # `my_value` is not set in the Airflow UI.
    env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
)

Pod 어피니티 구성

GKEStartPodOperator에서 affinity 매개변수를 구성할 때 특정 노드 풀의 노드 등 pod를 예약할 노드를 제어합니다. 클러스터를 만들 때 pool-0pool-1이라는 노드 풀 두 개를 만들었습니다. 이 연산자는 포드가 pool-1에서만 실행되도록 지정합니다.

실행된 포드가 pool-1의 임시 GKE 클러스터에 있고, Kubernetes Engine 그룹 내의 pool-0과 별도의 상자가 표시됨을 보여주는 Cloud Composer 환경 화살표
pod 어피니티를 통한 Cloud Composer Kubernetes pod 실행 위치(확대하려면 클릭)


Airflow 2

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_affinity_ex = GKEStartPodOperator(
    task_id="ex-pod-affinity",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    name="ex-pod-affinity",
    namespace="default",
    image="perl",
    cmds=["perl"],
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # affinity allows you to constrain which nodes your pod is eligible to
    # be scheduled on, based on labels on the node. In this case, if the
    # label 'cloud.google.com/gke-nodepool' with value
    # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
    # nodes, it will fail to schedule.
    affinity={
        "nodeAffinity": {
            # requiredDuringSchedulingIgnoredDuringExecution means in order
            # for a pod to be scheduled on a node, the node must have the
            # specified labels. However, if labels on a node change at
            # runtime such that the affinity rules on a pod are no longer
            # met, the pod will still continue to run on the node.
            "requiredDuringSchedulingIgnoredDuringExecution": {
                "nodeSelectorTerms": [
                    {
                        "matchExpressions": [
                            {
                                # When nodepools are created in Google Kubernetes
                                # Engine, the nodes inside of that nodepool are
                                # automatically assigned the label
                                # 'cloud.google.com/gke-nodepool' with the value of
                                # the nodepool's name.
                                "key": "cloud.google.com/gke-nodepool",
                                "operator": "In",
                                # The label key's value that pods can be scheduled
                                # on.
                                "values": [
                                    "pool-1",
                                ],
                            }
                        ]
                    }
                ]
            }
        }
    },
)

Airflow 1

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_affinity_ex = GKEStartPodOperator(
    task_id="ex-pod-affinity",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    name="ex-pod-affinity",
    namespace="default",
    image="perl",
    cmds=["perl"],
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # affinity allows you to constrain which nodes your pod is eligible to
    # be scheduled on, based on labels on the node. In this case, if the
    # label 'cloud.google.com/gke-nodepool' with value
    # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
    # nodes, it will fail to schedule.
    affinity={
        "nodeAffinity": {
            # requiredDuringSchedulingIgnoredDuringExecution means in order
            # for a pod to be scheduled on a node, the node must have the
            # specified labels. However, if labels on a node change at
            # runtime such that the affinity rules on a pod are no longer
            # met, the pod will still continue to run on the node.
            "requiredDuringSchedulingIgnoredDuringExecution": {
                "nodeSelectorTerms": [
                    {
                        "matchExpressions": [
                            {
                                # When nodepools are created in Google Kubernetes
                                # Engine, the nodes inside of that nodepool are
                                # automatically assigned the label
                                # 'cloud.google.com/gke-nodepool' with the value of
                                # the nodepool's name.
                                "key": "cloud.google.com/gke-nodepool",
                                "operator": "In",
                                # The label key's value that pods can be scheduled
                                # on.
                                "values": [
                                    "pool-1",
                                ],
                            }
                        ]
                    }
                ]
            }
        }
    },
)

전체 구성

이 예시에서는 GKEStartPodOperator에서 구성할 수 있는 모든 변수를 보여줍니다 코드를 수정하지 않아도 ex-all-configs 작업이 성공적으로 수행됩니다.

각 변수에 대한 세부정보는 GKE 연산자에 대한 Airflow 참조를 확인하세요.

Airflow 2

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_full_pod = GKEStartPodOperator(
    task_id="ex-all-configs",
    name="full",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="perl",
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["perl"],
    # Arguments to the entrypoint. The docker image's CMD is used if this
    # is not provided. The arguments parameter is templated.
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # The secrets to pass to Pod, the Pod will fail to create if the
    # secrets you specify in a Secret object do not exist in Kubernetes.
    secrets=[],
    # Labels to apply to the Pod.
    labels={"pod-label": "label-name"},
    # Timeout to start up the Pod, default is 120.
    startup_timeout_seconds=120,
    # The environment variables to be initialized in the container
    # env_vars are templated.
    env_vars={"EXAMPLE_VAR": "/example/value"},
    # If true, logs stdout output of container. Defaults to True.
    get_logs=True,
    # Determines when to pull a fresh image, if 'IfNotPresent' will cause
    # the Kubelet to skip pulling an image if it already exists. If you
    # want to always pull a new image, set it to 'Always'.
    image_pull_policy="Always",
    # Annotations are non-identifying metadata you can attach to the Pod.
    # Can be a large range of data, and can include characters that are not
    # permitted by labels.
    annotations={"key1": "value1"},
    # Resource specifications for Pod, this will allow you to set both cpu
    # and memory limits and requirements.
    # Prior to Airflow 1.10.4, resource specifications were
    # passed as a Pod Resources Class object,
    # If using this example on a version of Airflow prior to 1.10.4,
    # import the "pod" package from airflow.contrib.kubernetes and use
    # resources = pod.Resources() instead passing a dict
    # For more info see:
    # https://github.com/apache/airflow/pull/4551
    resources={"limit_memory": "250M", "limit_cpu": "100m"},
    # If true, the content of /airflow/xcom/return.json from container will
    # also be pushed to an XCom when the container ends.
    do_xcom_push=False,
    # List of Volume objects to pass to the Pod.
    volumes=[],
    # List of VolumeMount objects to pass to the Pod.
    volume_mounts=[],
    # Affinity determines which nodes the Pod can run on based on the
    # config. For more information see:
    # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
    affinity={},
)

Airflow 1

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
CLUSTER_ZONE = "us-west1-a"
CLUSTER_NAME = "example-cluster"
kubernetes_full_pod = GKEStartPodOperator(
    task_id="ex-all-configs",
    name="full",
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="perl",
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["perl"],
    # Arguments to the entrypoint. The docker image's CMD is used if this
    # is not provided. The arguments parameter is templated.
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # The secrets to pass to Pod, the Pod will fail to create if the
    # secrets you specify in a Secret object do not exist in Kubernetes.
    secrets=[],
    # Labels to apply to the Pod.
    labels={"pod-label": "label-name"},
    # Timeout to start up the Pod, default is 120.
    startup_timeout_seconds=120,
    # The environment variables to be initialized in the container
    # env_vars are templated.
    env_vars={"EXAMPLE_VAR": "/example/value"},
    # If true, logs stdout output of container. Defaults to True.
    get_logs=True,
    # Determines when to pull a fresh image, if 'IfNotPresent' will cause
    # the Kubelet to skip pulling an image if it already exists. If you
    # want to always pull a new image, set it to 'Always'.
    image_pull_policy="Always",
    # Annotations are non-identifying metadata you can attach to the Pod.
    # Can be a large range of data, and can include characters that are not
    # permitted by labels.
    annotations={"key1": "value1"},
    # Resource specifications for Pod, this will allow you to set both cpu
    # and memory limits and requirements.
    # Prior to Airflow 1.10.4, resource specifications were
    # passed as a Pod Resources Class object,
    # If using this example on a version of Airflow prior to 1.10.4,
    # import the "pod" package from airflow.contrib.kubernetes and use
    # resources = pod.Resources() instead passing a dict
    # For more info see:
    # https://github.com/apache/airflow/pull/4551
    resources={"limit_memory": "250M", "limit_cpu": "100m"},
    # If true, the content of /airflow/xcom/return.json from container will
    # also be pushed to an XCom when the container ends.
    do_xcom_push=False,
    # List of Volume objects to pass to the Pod.
    volumes=[],
    # List of VolumeMount objects to pass to the Pod.
    volume_mounts=[],
    # Affinity determines which nodes the Pod can run on based on the
    # config. For more information see:
    # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
    affinity={},
)

클러스터 삭제

여기에 표시된 코드는 이 가이드의 시작 부분에서 생성된 클러스터를 삭제합니다.

Airflow 2

delete_cluster = GKEDeleteClusterOperator(
    task_id="delete_cluster",
    name=CLUSTER_NAME,
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
)

Airflow 1

delete_cluster = GKEDeleteClusterOperator(
    task_id="delete_cluster",
    name=CLUSTER_NAME,
    project_id=PROJECT_ID,
    location=CLUSTER_ZONE,
)

다음 단계