Télécharger les données de table au format Arrow

Téléchargez les données de table à l'aide du format de données Arrow et désérialisez les données en objets de ligne

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code


Avant d'essayer l'exemple ci-dessous, suivez la procédure de configuration pour Java décrite dans le guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery Java.

import com.google.api.gax.rpc.ServerStream;
import com.google.cloud.bigquery.storage.v1.ArrowRecordBatch;
import com.google.cloud.bigquery.storage.v1.ArrowSchema;
import com.google.cloud.bigquery.storage.v1.BigQueryReadClient;
import com.google.cloud.bigquery.storage.v1.CreateReadSessionRequest;
import com.google.cloud.bigquery.storage.v1.DataFormat;
import com.google.cloud.bigquery.storage.v1.ReadRowsRequest;
import com.google.cloud.bigquery.storage.v1.ReadRowsResponse;
import com.google.cloud.bigquery.storage.v1.ReadSession;
import com.google.cloud.bigquery.storage.v1.ReadSession.TableModifiers;
import com.google.cloud.bigquery.storage.v1.ReadSession.TableReadOptions;
import com.google.common.base.Preconditions;
import com.google.protobuf.Timestamp;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.FieldVector;
import org.apache.arrow.vector.VectorLoader;
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.ipc.ReadChannel;
import org.apache.arrow.vector.ipc.message.MessageSerializer;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.Schema;
import org.apache.arrow.vector.util.ByteArrayReadableSeekableByteChannel;

public class StorageArrowSample {

   * SimpleRowReader handles deserialization of the Apache Arrow-encoded row batches transmitted
   * from the storage API using a generic datum decoder.
  private static class SimpleRowReader implements AutoCloseable {

    BufferAllocator allocator = new RootAllocator(Long.MAX_VALUE);

    // Decoder object will be reused to avoid re-allocation and too much garbage collection.
    private final VectorSchemaRoot root;
    private final VectorLoader loader;

    public SimpleRowReader(ArrowSchema arrowSchema) throws IOException {
      Schema schema =
              new ReadChannel(
                  new ByteArrayReadableSeekableByteChannel(
      List<FieldVector> vectors = new ArrayList<>();
      for (Field field : schema.getFields()) {
      root = new VectorSchemaRoot(vectors);
      loader = new VectorLoader(root);

     * Sample method for processing Arrow data which only validates decoding.
     * @param batch object returned from the ReadRowsResponse.
    public void processRows(ArrowRecordBatch batch) throws IOException {
      org.apache.arrow.vector.ipc.message.ArrowRecordBatch deserializedBatch =
              new ReadChannel(
                  new ByteArrayReadableSeekableByteChannel(

      // Release buffers from batch (they are still held in the vectors in root).
      // Release buffers from vectors in root.

    public void close() {

  public static void main(String... args) throws Exception {
    // Sets your Google Cloud Platform project ID.
    // String projectId = "YOUR_PROJECT_ID";
    String projectId = args[0];
    Integer snapshotMillis = null;
    if (args.length > 1) {
      snapshotMillis = Integer.parseInt(args[1]);

    try (BigQueryReadClient client = BigQueryReadClient.create()) {
      String parent = String.format("projects/%s", projectId);

      // This example uses baby name data from the public datasets.
      String srcTable =
              "bigquery-public-data", "usa_names", "usa_1910_current");

      // We specify the columns to be projected by adding them to the selected fields,
      // and set a simple filter to restrict which rows are transmitted.
      TableReadOptions options =
              .setRowRestriction("state = \"WA\"")

      // Start specifying the read session we want created.
      ReadSession.Builder sessionBuilder =
              // This API can also deliver data serialized in Apache Avro format.
              // This example leverages Apache Arrow.

      // Optionally specify the snapshot time.  When unspecified, snapshot time is "now".
      if (snapshotMillis != null) {
        Timestamp t =
                .setSeconds(snapshotMillis / 1000)
                .setNanos((int) ((snapshotMillis % 1000) * 1000000))
        TableModifiers modifiers = TableModifiers.newBuilder().setSnapshotTime(t).build();

      // Begin building the session creation request.
      CreateReadSessionRequest.Builder builder =

      ReadSession session = client.createReadSession(builder.build());
      // Setup a simple reader and start a read session.
      try (SimpleRowReader reader = new SimpleRowReader(session.getArrowSchema())) {

        // Assert that there are streams available in the session.  An empty table may not have
        // data available.  If no sessions are available for an anonymous (cached) table, consider
        // writing results of a query to a named table rather than consuming cached results
        // directly.
        Preconditions.checkState(session.getStreamsCount() > 0);

        // Use the first stream to perform reading.
        String streamName = session.getStreams(0).getName();

        ReadRowsRequest readRowsRequest =

        // Process each block of rows as they arrive and decode using our simple row reader.
        ServerStream<ReadRowsResponse> stream = client.readRowsCallable().call(readRowsRequest);
        for (ReadRowsResponse response : stream) {

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.