Enregistrer les résultats de la requête

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

La requête enregistre les résultats dans une table permanente.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez ce qui suit :

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Go.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// queryWithDestination demonstrates saving the results of a query to a specific table by setting the destination
// via the API properties.
func queryWithDestination(w io.Writer, projectID, destDatasetID, destTableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	q := client.Query("SELECT 17 as my_col")
	q.Location = "US" // Location must match the dataset(s) referenced in query.
	q.QueryConfig.Dst = client.Dataset(destDatasetID).Table(destTableID)
	// Run the query and process the returned row iterator.
	it, err := q.Read(ctx)
	if err != nil {
		return fmt.Errorf("query.Read(): %w", err)
	}
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;

public class SaveQueryToTable {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String query = "SELECT corpus FROM `bigquery-public-data.samples.shakespeare` GROUP BY corpus;";
    String destinationTable = "MY_TABLE";
    String destinationDataset = "MY_DATASET";

    saveQueryToTable(destinationDataset, destinationTable, query);
  }

  public static void saveQueryToTable(
      String destinationDataset, String destinationTableId, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Identify the destination table
      TableId destinationTable = TableId.of(destinationDataset, destinationTableId);

      // Build the query job
      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query).setDestinationTable(destinationTable).build();

      // Execute the query.
      bigquery.query(queryConfig);

      // The results are now saved in the destination table.

      System.out.println("Saved query ran successfully");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Saved query did not run \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Node.js.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryDestinationTable() {
  // Queries the U.S. given names dataset for the state of Texas
  // and saves results to permanent table.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Create destination table reference
  const dataset = bigquery.dataset(datasetId);
  const destinationTable = dataset.table(tableId);

  const query = `SELECT name
    FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
    WHERE state = 'TX'
    LIMIT 100`;

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced in the query.
    location: 'US',
    destination: destinationTable,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);

  console.log(`Job ${job.id} started.`);
  console.log(`Query results loaded to table ${destinationTable.id}`);
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the destination table.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.QueryJobConfig(destination=table_id)

sql = """
    SELECT corpus
    FROM `bigquery-public-data.samples.shakespeare`
    GROUP BY corpus;
"""

# Start the query, passing in the extra configuration.
query_job = client.query(sql, job_config=job_config)  # Make an API request.
query_job.result()  # Wait for the job to complete.

print("Query results loaded to the table {}".format(table_id))

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.