Télécharger les données d'une table publique dans un DataFrame à partir du bac à sable
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Utilisez l'API BigQuery Storage pour télécharger les résultats de requête dans DataFrame.
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis guide demonstrates how to use the BigQuery Storage API to download query results directly to a DataFrame in Python.\u003c/p\u003e\n"],["\u003cp\u003eThe provided Python code sample utilizes the \u003ccode\u003egoogle.cloud.bigquery\u003c/code\u003e library to execute a query and retrieve the results.\u003c/p\u003e\n"],["\u003cp\u003eThe BigQuery Storage API enables faster downloads of large tables compared to standard methods.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication to BigQuery is required and can be set up using Application Default Credentials.\u003c/p\u003e\n"],["\u003cp\u003eYou can use the provided Google Cloud sample browser to find additional code samples for Google Cloud products.\u003c/p\u003e\n"]]],[],null,["# Download public table data to DataFrame from the sandbox\n\nUse the BigQuery Storage API to download query results to DataFrame.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[BigQuery quickstart using\nclient libraries](/bigquery/docs/quickstarts/quickstart-client-libraries).\n\n\nFor more information, see the\n[BigQuery Python API\nreference documentation](/python/docs/reference/bigquery/latest).\n\n\nTo authenticate to BigQuery, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for client libraries](/bigquery/docs/authentication#client-libs).\n\n\n from google.cloud import https://cloud.google.com/python/docs/reference/bigquery/latest/\n\n # Construct a BigQuery client object.\n client = https://cloud.google.com/python/docs/reference/bigquery/latest/.https://cloud.google.com/python/docs/reference/bigquery/latest/google.cloud.bigquery.client.Client.html()\n\n # `SELECT *` is an anti-pattern in BigQuery because it is cheaper and\n # faster to use the BigQuery Storage API directly, but BigQuery Sandbox\n # users can only use the BigQuery Storage API to download query results.\n query_string = \"SELECT * FROM `bigquery-public-data.usa_names.usa_1910_current`\"\n\n # Use the BigQuery Storage API to speed-up downloads of large tables.\n dataframe = client.https://cloud.google.com/python/docs/reference/bigquery/latest/google.cloud.bigquery.client.Client.html#google_cloud_bigquery_client_Client_query_and_wait(query_string).to_dataframe(\n create_bqstorage_client=True\n )\n\n print(dataframe.info())\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=bigquery)."]]