Carica un Parquet per sostituire una tabella

Carica un file Parquet da Cloud Storage, sostituendo una tabella.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta API Go BigQuery documentazione di riferimento.

Per autenticarti a BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importParquetTruncate demonstrates loading Apache Parquet data from Cloud Storage into a table
// and overwriting/truncating existing data in the table.
func importParquetTruncate(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.parquet")
	gcsRef.SourceFormat = bigquery.Parquet
	gcsRef.AutoDetect = true
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteTruncate

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %w", status.Err())
	}
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di BigQuery con librerie client. Per ulteriori informazioni, consulta API Java BigQuery documentazione di riferimento.

Per autenticarti a BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.


import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.JobInfo.WriteDisposition;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.TableId;
import java.math.BigInteger;

public class LoadParquetReplaceTable {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.parquet";
    String tableName = "us_states";
    loadParquetReplaceTable(datasetName, tableName, sourceUri);
  }

  public static void loadParquetReplaceTable(
      String datasetName, String tableName, String sourceUri) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Imports a GCS file into a table and overwrites table data if table already exists.
      // This sample loads CSV file at:
      // https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
      TableId tableId = TableId.of(datasetName, tableName);

      // For more information on LoadJobConfiguration see:
      // https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/bigquery/LoadJobConfiguration.Builder.html
      LoadJobConfiguration configuration =
          LoadJobConfiguration.builder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.parquet())
              // Set the write disposition to overwrite existing table data.
              .setWriteDisposition(WriteDisposition.WRITE_TRUNCATE)
              .build();

      // For more information on Job see:
      // https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html
      // Load the table
      Job job = bigquery.create(JobInfo.of(configuration));

      // Load data from a GCS parquet file into the table
      // Blocks until this load table job completes its execution, either failing or succeeding.
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to load into the table due to an error: \n"
                + job.getStatus().getError());
        return;
      }

      // Check number of rows loaded into the table
      BigInteger numRows = bigquery.getTable(tableId).getNumRows();
      System.out.printf("Loaded %d rows. \n", numRows);

      System.out.println("GCS parquet overwrote existing table successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Table extraction job was interrupted. \n" + e.toString());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di BigQuery con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Node.js.

Per autenticarti a BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.parquet';

async function loadParquetFromGCSTruncate() {
  /**
   * Imports a GCS file into a table and overwrites
   * table data if table already exists.
   */

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'PARQUET',
    // Set the write disposition to overwrite existing table data.
    writeDisposition: 'WRITE_TRUNCATE',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
  console.log(
    `Write disposition used: ${job.configuration.load.writeDisposition}.`
  );
}

PHP

Prima di provare questo esempio, segui le istruzioni per la configurazione di PHP nel Guida rapida di BigQuery con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery PHP.

Per autenticarti a BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

use Google\Cloud\BigQuery\BigQueryClient;

/**
 * Import data from storage parquet with write truncate option.
 *
 * @param string $projectId The project Id of your Google Cloud Project.
 * @param string $datasetId The BigQuery dataset ID.
 * @param string $tableId The BigQuery table ID.
 */
function import_from_storage_parquet_truncate(
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // instantiate the bigquery table service
    $bigQuery = new BigQueryClient([
      'projectId' => $projectId,
    ]);
    $table = $bigQuery->dataset($datasetId)->table($tableId);

    // create the import job
    $gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.parquet';
    $loadConfig = $table->loadFromStorage($gcsUri)->sourceFormat('PARQUET')->writeDisposition('WRITE_TRUNCATE');
    $job = $table->runJob($loadConfig);

    // check if the job is complete
    $job->reload();
    if (!$job->isComplete()) {
        throw new \Exception('Job has not yet completed', 500);
    }
    // check if the job has errors
    if (isset($job->info()['status']['errorResult'])) {
        $error = $job->info()['status']['errorResult']['message'];
        printf('Error running job: %s' . PHP_EOL, $error);
    } else {
        print('Data imported successfully' . PHP_EOL);
    }
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta API Python BigQuery documentazione di riferimento.

Per autenticarti a BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import io

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
)

body = io.BytesIO(b"Washington,WA")
client.load_table_from_file(body, table_id, job_config=job_config).result()
previous_rows = client.get_table(table_id).num_rows
assert previous_rows > 0

job_config = bigquery.LoadJobConfig(
    write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE,
    source_format=bigquery.SourceFormat.PARQUET,
)

uri = "gs://cloud-samples-data/bigquery/us-states/us-states.parquet"
load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Passaggi successivi

Per cercare ed eseguire filtri sugli esempi di codice per altri prodotti Google Cloud, consulta il browser di esempi di Google Cloud.