Cargar un archivo JSON

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

Carga un archivo JSON desde Cloud Storage mediante un esquema explícito.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para C#.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsJson
{
    public void LoadTableGcsJson(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
        var dataset = client.GetDataset(datasetId);
        var schema = new TableSchemaBuilder {
            { "name", BigQueryDbType.String },
            { "post_abbr", BigQueryDbType.String }
        }.Build();
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.NewlineDelimitedJson
        };
        // Create and run job
        BigQueryJob loadJob = client.CreateLoadJob(
            sourceUri: gcsURI, destination: destinationTableRef,
            schema: schema, options: jobOptions);
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Go.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importJSONExplicitSchema demonstrates loading newline-delimited JSON data from Cloud Storage
// into a BigQuery table and providing an explicit schema for the data.
func importJSONExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.json")
	gcsRef.SourceFormat = bigquery.JSON
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
	}
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %w", status.Err())
	}
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load JSON data from Cloud Storage into a new BigQuery table
public class LoadJsonFromGcs {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadJsonFromGcs(datasetName, tableName, sourceUri, schema);
  }

  public static void loadJsonFromGcs(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.json())
              .setSchema(schema)
              .build();

      // Load data from a GCS JSON file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Json from GCS successfully loaded in a table");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the json file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.json
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.json';

async function loadJSONFromGCS() {
  // Imports a GCS file into a table with manually defined schema.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'NEWLINE_DELIMITED_JSON',
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
}

PHP

Antes de probar este ejemplo, sigue las instrucciones de configuración para PHP incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para PHP.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/**
 * Import data from storage json.
 *
 * @param string $projectId The project Id of your Google Cloud Project.
 * @param string $datasetId The BigQuery dataset ID.
 * @param string $tableId The BigQuery table ID.
 */
function import_from_storage_json(
    string $projectId,
    string $datasetId,
    string $tableId = 'us_states'
): void {
    // instantiate the bigquery table service
    $bigQuery = new BigQueryClient([
      'projectId' => $projectId,
    ]);
    $dataset = $bigQuery->dataset($datasetId);
    $table = $dataset->table($tableId);

    // create the import job
    $gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.json';
    $schema = [
      'fields' => [
        ['name' => 'name', 'type' => 'string'],
        ['name' => 'post_abbr', 'type' => 'string']
        ]
      ];
    $loadConfig = $table->loadFromStorage($gcsUri)->schema($schema)->sourceFormat('NEWLINE_DELIMITED_JSON');
    $job = $table->runJob($loadConfig);
    // poll the job until it is complete
    $backoff = new ExponentialBackoff(10);
    $backoff->execute(function () use ($job) {
        print('Waiting for job to complete' . PHP_EOL);
        $job->reload();
        if (!$job->isComplete()) {
            throw new \Exception('Job has not yet completed', 500);
        }
    });
    // check if the job has errors
    if (isset($job->info()['status']['errorResult'])) {
        $error = $job->info()['status']['errorResult']['message'];
        printf('Error running job: %s' . PHP_EOL, $error);
    } else {
        print('Data imported successfully' . PHP_EOL);
    }
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON,
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.json"

load_job = client.load_table_from_uri(
    uri,
    table_id,
    location="US",  # Must match the destination dataset location.
    job_config=job_config,
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Antes de probar este ejemplo, sigue las instrucciones de configuración para Ruby incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Ruby.

require "google/cloud/bigquery"

def load_table_gcs_json dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.json"
  table_id = "us_states"

  load_job = dataset.load_job table_id, gcs_uri, format: "json" do |schema|
    schema.string "name"
    schema.string "post_abbr"
  end
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done! # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table table_id
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.