Exportar uma tabela para um arquivo JSON

Exporta uma tabela para um arquivo JSON delimitado por novas linhas em um bucket do Cloud Storage.

Exemplo de código

Antes de testar esta amostra, siga as instruções de configuração do C# no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em C#.

Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.


using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryExtractTableJson
{
    public void ExtractTableJson(
        string projectId = "your-project-id",
        string bucketName = "your-bucket-name")
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        string destinationUri = $"gs://{bucketName}/shakespeare.json";
        var jobOptions = new CreateExtractJobOptions()
        {
            DestinationFormat = FileFormat.NewlineDelimitedJson
        };
        BigQueryJob job = client.CreateExtractJob(
            projectId: "bigquery-public-data",
            datasetId: "samples",
            tableId: "shakespeare",
            destinationUri: destinationUri,
            options: jobOptions
        );
        job = job.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        Console.Write($"Exported table to {destinationUri}.");
    }
}

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em Go.

Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// exportTableAsJSON demonstrates using an export job to
// write the contents of a table into Cloud Storage as newline delimited JSON.
func exportTableAsJSON(projectID, gcsURI string) error {
	// projectID := "my-project-id"
	// gcsURI := "gs://mybucket/shakespeare.json"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	srcProject := "bigquery-public-data"
	srcDataset := "samples"
	srcTable := "shakespeare"

	gcsRef := bigquery.NewGCSReference(gcsURI)
	gcsRef.DestinationFormat = bigquery.JSON

	extractor := client.DatasetInProject(srcProject, srcDataset).Table(srcTable).ExtractorTo(gcsRef)
	// You can choose to run the job in a specific location for more complex data locality scenarios.
	// Ex: In this example, source dataset and GCS bucket are in the US.
	extractor.Location = "US"

	job, err := extractor.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	return nil
}

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em Java.

Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.

import com.google.cloud.RetryOption;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.Table;
import com.google.cloud.bigquery.TableId;
import org.threeten.bp.Duration;

public class ExtractTableToJson {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "bigquery-public-data";
    String datasetName = "samples";
    String tableName = "shakespeare";
    String bucketName = "my-bucket";
    String destinationUri = "gs://" + bucketName + "/path/to/file";
    // For more information on export formats available see:
    // https://cloud.google.com/bigquery/docs/exporting-data#export_formats_and_compression_types
    // For more information on Job see:
    // https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html

    // Note that FormatOptions.json().toString() is not "JSON" but "NEWLINE_DELIMITED_JSON"
    // Using FormatOptions Enum for this will prevent problems with unexpected format names.
    String dataFormat = FormatOptions.json().getType();

    extractTableToJson(projectId, datasetName, tableName, destinationUri, dataFormat);
  }

  // Exports datasetName:tableName to destinationUri as a JSON file
  public static void extractTableToJson(
      String projectId,
      String datasetName,
      String tableName,
      String destinationUri,
      String dataFormat) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(projectId, datasetName, tableName);
      Table table = bigquery.getTable(tableId);

      Job job = table.extract(dataFormat, destinationUri);

      // Blocks until this job completes its execution, either failing or succeeding.
      Job completedJob =
          job.waitFor(
              RetryOption.initialRetryDelay(Duration.ofSeconds(1)),
              RetryOption.totalTimeout(Duration.ofMinutes(3)));
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to extract due to an error: \n" + job.getStatus().getError());
        return;
      }
      System.out.println(
          "Table export successful. Check in GCS bucket for the " + dataFormat + " file.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Table extraction job was interrupted. \n" + e.toString());
    }
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em Node.js.

Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

const bigquery = new BigQuery();
const storage = new Storage();

async function extractTableJSON() {
  // Exports my_dataset:my_table to gcs://my-bucket/my-file as JSON.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  // const bucketName = "my-bucket";
  // const filename = "file.json";

  // Location must match that of the source table.
  const options = {
    format: 'json',
    location: 'US',
  };

  // Export data from the table into a Google Cloud Storage file
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .extract(storage.bucket(bucketName).file(filename), options);

  console.log(`Job ${job.id} created.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em Python.

Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.

# from google.cloud import bigquery
# client = bigquery.Client()
# bucket_name = 'my-bucket'

destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.json")
dataset_ref = bigquery.DatasetReference(project, dataset_id)
table_ref = dataset_ref.table("shakespeare")
job_config = bigquery.job.ExtractJobConfig()
job_config.destination_format = bigquery.DestinationFormat.NEWLINE_DELIMITED_JSON

extract_job = client.extract_table(
    table_ref,
    destination_uri,
    job_config=job_config,
    # Location must match that of the source table.
    location="US",
)  # API request
extract_job.result()  # Waits for job to complete.

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a pesquisa de exemplos de código doGoogle Cloud .