Esportazione di un modello

Esporta un modello esistente in un bucket Cloud Storage esistente.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

C#

Prima di provare questo esempio, segui le istruzioni di configurazione di C# nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery C#.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.


using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryExtractModel
{
    public void ExtractModel(string projectId, string datasetId, string modelId, string destinationUri)
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        BigQueryJob job = client.CreateModelExtractJob(
            projectId: projectId,
            datasetId: datasetId,
            modelId: modelId,
            destinationUri: destinationUri
        );
        job = job.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        System.IO.File.AppendAllText("log.txt", $"Exported model to {destinationUri}");
        Console.Write($"Exported model to {destinationUri}");
    }
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Go.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// exportModel demonstrates how to export an existing
// BigQuery ML Model to Google Cloud Storage.
func exportModel(projectID, datasetID, modelID, gcsURI string) error {
	// projectID := "my-project-id"
	// datasetID := "dataset-id"
	// modelID := "model-id"
	// gcsURI := "gs://mybucket/path/to/model"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference(gcsURI)

	extractor := client.DatasetInProject(projectID, datasetID).Model(modelID).ExtractorTo(gcsRef)
	// You can choose to run the job in a specific location for more complex data locality scenarios.
	// Ex: In this example, source dataset and GCS bucket are in the US.
	extractor.Location = "US"

	job, err := extractor.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Java.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.ExtractJobConfiguration;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.ModelId;

// Sample to extract model to GCS bucket
public class ExtractModel {

  public static void main(String[] args) throws InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectName = "bigquery-public-data";
    String datasetName = "samples";
    String modelName = "model";
    String bucketName = "MY-BUCKET-NAME";
    String destinationUri = "gs://" + bucketName + "/path/to/file";
    extractModel(projectName, datasetName, modelName, destinationUri);
  }

  public static void extractModel(
      String projectName, String datasetName, String modelName, String destinationUri)
      throws InterruptedException {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      ModelId modelId = ModelId.of(projectName, datasetName, modelName);

      ExtractJobConfiguration extractConfig =
          ExtractJobConfiguration.newBuilder(modelId, destinationUri).build();

      Job job = bigquery.create(JobInfo.of(extractConfig));

      // Blocks until this job completes its execution, either failing or succeeding.
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to extract due to an error: \n" + job.getStatus().getError());
        return;
      }
      System.out.println("Model extract successful");
    } catch (BigQueryException ex) {
      System.out.println("Model extraction job was interrupted. \n" + ex.toString());
    }
  }
}

Ruby

Prima di provare questo esempio, segui le istruzioni di configurazione di Ruby nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Ruby.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

require "google/cloud/bigquery"

##
# Exports a model to a Google Cloud Storage bucket.
#
# @param dataset_id [String] The ID of the dataset that contains the model.
# @param model_id   [String] The ID of the model to export.
# @param destination_uri [String] The Google Cloud Storage bucket to export the model to.
def export_model dataset_id, model_id, destination_uri
  bigquery = Google::Cloud::Bigquery.new
  dataset = bigquery.dataset dataset_id
  model = dataset.model model_id

  puts "Extracting model #{model.model_id} to #{destination_uri}"
  job = model.extract_job destination_uri
  job.wait_until_done!

  if job.failed?
    puts "Error extracting model: #{job.error}"
  else
    puts "Model extracted successfully"
  end
end

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .