Hilfe zu FAQ

FAQ Assist schlägt menschlichen Kundenservicemitarbeitern in Unterhaltungen mit Endnutzern relevante Antworten auf FAQ vor. Mit diesem Feature kann ein menschlicher Kundenservicemitarbeiter häufige Endnutzerfragen beantworten, während sich der menschliche Kundenservicemitarbeiter und der Endnutzer unterhalten.

Agent Assist verfolgt die Unterhaltung und parst FAQ-Dokumente, die in Wissensdatenbanken gespeichert sind, um Antworten auf Endnutzerfragen vorzuschlagen. Der menschliche Kundenservicemitarbeiter kann diese Vorschläge während der Unterhaltung prüfen und gegebenenfalls dem Endnutzer als Antwort erteilen.

In diesem Dokument wird beschrieben, wie Sie mit der API FAQ Assist implementieren und während der Laufzeit Vorschläge von diesem Feature erhalten. Sie haben die Möglichkeit, mit der Agent Assist Console die Ergebnisse von „Artikelvorschlag“ während der Entwicklung zu testen. Sie müssen die API jedoch während der Laufzeit direkt aufrufen. Informationen zum Testen der Feature-Leistung über die Agent Assist Console finden Sie im Abschnitt „Anleitungen“.

Hinweise

Führen Sie die folgenden Schritte aus, bevor Sie mit dieser Anleitung beginnen:

  1. Aktivieren Sie die Dialogflow API für IhrGoogle Cloud -Projekt.

Unterhaltungsprofil konfigurieren

Damit Sie Vorschläge von Agent Assist erhalten, müssen Sie eine Wissensdatenbank mit Ihren hochgeladenen Dokumenten erstellen und ein Unterhaltungsprofil konfigurieren. Sie können diese Aktionen auch über die Agent Assist Console ausführen, wenn Sie die API nicht direkt aufrufen möchten.

Knowledge Base erstellen

Bevor Sie Dokumente hochladen können, müssen Sie zuerst eine Wissensdatenbank erstellen, in der sie abgelegt werden. Rufen Sie zum Erstellen einer Wissensdatenbank die Methode create für den Typ KnowledgeBase auf.

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • KNOWLEDGE_BASE_DISPLAY_NAME: Name der gewünschten Wissensdatenbank

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/knowledgeBases

JSON-Text anfordern:

{
  "displayName": "KNOWLEDGE_BASE_DISPLAY_NAME"
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/knowledgeBases/NDA4MTM4NzE2MjMwNDUxMjAwMA",
  "displayName": "KNOWLEDGE_BASE_DISPLAY_NAME"
}

Das Pfadsegment nach knowledgeBases enthält Ihre neue Wissensdatenbank-ID.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_knowledge_base(project_id, display_name):
    """Creates a Knowledge base.

    Args:
        project_id: The GCP project linked with the agent.
        display_name: The display name of the Knowledge base."""
    from google.cloud import dialogflow_v2beta1 as dialogflow

    client = dialogflow.KnowledgeBasesClient()
    project_path = client.common_project_path(project_id)

    knowledge_base = dialogflow.KnowledgeBase(display_name=display_name)

    response = client.create_knowledge_base(
        parent=project_path, knowledge_base=knowledge_base
    )

    print("Knowledge Base created:\n")
    print("Display Name: {}\n".format(response.display_name))
    print("Name: {}\n".format(response.name))

Wissensdokument erstellen

Sie können der Wissensdatenbank jetzt Dokumente hinzufügen. Wenn Sie ein Dokument in der Wissensdatenbank erstellen möchten, rufen Sie die Methode create für den Typ Document auf. Legen Sie KnowledgeType auf FAQ fest. In diesem Beispiel wird das Dokument Cloud Storage-FAQ verwendet, das in einen öffentlich freigegebenen Cloud Storage-Bucket hochgeladen wurde. Wenn Sie Artikelvorschläge in Ihrem eigenen System einrichten, müssen Dokumente in einem der folgenden Formate vorliegen. Weitere Informationen zu Best Practices für Dokumente finden Sie in der Dokumentation zu Wissensdokumenten.

Das FAQ-Dokument kann in einem von drei Formaten vorliegen:

  • Eine öffentliche URL.
  • Ein Cloud Storage-Pfad zu einer csv-Datei.
  • Eine csv-Datei, die Sie in die API-Anfrage einfügen.

Wenn Ihr Dokument im csv-Format ist, muss es zwei Spalten enthalten: FAQ-Fragen müssen in der ersten Spalte und die Antworten auf jede Frage in der zweiten Spalte aufgeführt sein. Jede häufig gestellte Frage und die zugehörige Antwort werden als FAQ-Paar bezeichnet. Die Datei csv darf keine Kopfzeile enthalten. Wenn Ihr Dokument eine öffentliche URL ist, muss es sich um eine FAQ-Seite mit mehreren FAQ-Paaren handeln.

Informationen zu Best Practices finden Sie in der Dokumentation zu Wissensdokumenten.

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • KNOWLEDGE_BASE_ID: ID Ihrer Wissensdatenbank (bei der vorherigen Anfrage zurückgegeben)
  • DOCUMENT_DISPLAY_NAME: gewünschter Name des Wissensdokuments

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/knowledgeBases/KNOWLEDGE_BASE_ID/documents

JSON-Text anfordern:

{
  "displayName": "DOCUMENT_DISPLAY_NAME",
  "mimeType": "text/html",
  "knowledgeTypes": "FAQ",
  "contentUri": "https://cloud.google.com/storage/docs/faq"
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/operations/ks-add_document-MzA5NTY2MTc5Mzg2Mzc5NDY4OA"
}

Die Antwort ist ein Vorgang mit langer Ausführungszeit, bei dem Sie prüfen können, ob er abgeschlossen wurde.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_document(
    project_id, knowledge_base_id, display_name, mime_type, knowledge_type, content_uri
):
    """Creates a Document.

    Args:
        project_id: The GCP project linked with the agent.
        knowledge_base_id: Id of the Knowledge base.
        display_name: The display name of the Document.
        mime_type: The mime_type of the Document. e.g. text/csv, text/html,
            text/plain, text/pdf etc.
        knowledge_type: The Knowledge type of the Document. e.g. FAQ,
            EXTRACTIVE_QA.
        content_uri: Uri of the document, e.g. gs://path/mydoc.csv,
            http://mypage.com/faq.html."""
    from google.cloud import dialogflow_v2beta1 as dialogflow

    client = dialogflow.DocumentsClient()
    knowledge_base_path = dialogflow.KnowledgeBasesClient.knowledge_base_path(
        project_id, knowledge_base_id
    )

    document = dialogflow.Document(
        display_name=display_name, mime_type=mime_type, content_uri=content_uri
    )

    document.knowledge_types.append(
        getattr(dialogflow.Document.KnowledgeType, knowledge_type)
    )

    response = client.create_document(parent=knowledge_base_path, document=document)
    print("Waiting for results...")
    document = response.result(timeout=120)
    print("Created Document:")
    print(" - Display Name: {}".format(document.display_name))
    print(" - Knowledge ID: {}".format(document.name))
    print(" - MIME Type: {}".format(document.mime_type))
    print(" - Knowledge Types:")
    for knowledge_type in document.knowledge_types:
        print("    - {}".format(KNOWLEDGE_TYPES[knowledge_type]))
    print(" - Source: {}\n".format(document.content_uri))

Unterhaltungsprofil erstellen

Mit einem Unterhaltungsprofil werden eine Reihe von Parametern konfiguriert, die die Vorschläge steuern, die einem Kundenservicemitarbeiter während einer Unterhaltung gegeben wurden. In den folgenden Schritten wird ein ConversationProfile mit einem HumanAgentAssistantConfig-Objekt erstellt. Sie können diese Aktionen auch über die Agent Assist Console ausführen, wenn Sie die API nicht direkt aufrufen möchten.

Inline-Vorschläge sind standardmäßig aktiviert. Optional können Sie Cloud Pub/Sub-Benachrichtigungen aktivieren, wenn Sie das Unterhaltungsprofil konfigurieren.

REST

Zum Erstellen eines Unterhaltungsprofils rufen Sie die Methode create für die Ressource ConversationProfile auf.

noSmallTalk: Wenn true, werden nach Small-Talk-Nachrichten wie "Hallo", "wie geht es dir" usw. keine Vorschläge ausgelöst. Bei false werden Vorschläge nach Small-Talk-Nachrichten ausgelöst.

onlyEndUser: Bei true werden Vorschläge nur nach Nachrichten von Endnutzern ausgelöst. Bei false werden Vorschläge sowohl nach Nachrichten von Endnutzern als auch von Kundenservicemitarbeitern ausgelöst.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • KNOWLEDGE_BASE_ID: Ihre Wissensdatenbank-ID

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/conversationProfiles

JSON-Text anfordern:

{
  "displayName": "my-conversation-profile-display-name",
  "humanAgentAssistantConfig": {
    "humanAgentSuggestionConfig": {
      "featureConfigs": [
        {
          "suggestionFeature": {
            "type": "FAQ"
          },
          "queryConfig": {
            "knowledgeBaseQuerySource": {
              "knowledgeBases": ["projects/PROJECT_ID/knowledgeBases/KNOWLEDGE_BASE_ID"]
            }
          },
          "enableEventBasedSuggestion": false,
          "enableInlineSuggestion": true,
          "SuggestionTriggerSettings": {
             "noSmallTalk": true,
             "onlyEndUser": true,
           }
        }
      ]
    }
  }
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/conversationProfiles/CONVERSATION_PROFILE_ID",
  "displayName": "my-conversation-profile-display-name",
  "humanAgentAssistantConfig": {
    ...
  }
}

Das Pfadsegment nach conversationProfiles enthält Ihre neue Unterhaltungsprofil-ID.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_conversation_profile_article_faq(
    project_id,
    display_name,
    article_suggestion_knowledge_base_id=None,
    faq_knowledge_base_id=None,
):
    """Creates a conversation profile with given values

    Args: project_id:  The GCP project linked with the conversation profile.
        display_name: The display name for the conversation profile to be
        created.
        article_suggestion_knowledge_base_id: knowledge base id for article
        suggestion.
        faq_knowledge_base_id: knowledge base id for faq."""

    client = dialogflow.ConversationProfilesClient()
    project_path = client.common_project_path(project_id)

    conversation_profile = {
        "display_name": display_name,
        "human_agent_assistant_config": {
            "human_agent_suggestion_config": {"feature_configs": []}
        },
        "language_code": "en-US",
    }

    if article_suggestion_knowledge_base_id is not None:
        as_kb_path = dialogflow.KnowledgeBasesClient.knowledge_base_path(
            project_id, article_suggestion_knowledge_base_id
        )
        feature_config = {
            "suggestion_feature": {"type_": "ARTICLE_SUGGESTION"},
            "suggestion_trigger_settings": {
                "no_small_talk": True,
                "only_end_user": True,
            },
            "query_config": {
                "knowledge_base_query_source": {"knowledge_bases": [as_kb_path]},
                "max_results": 3,
            },
        }
        conversation_profile["human_agent_assistant_config"][
            "human_agent_suggestion_config"
        ]["feature_configs"].append(feature_config)
    if faq_knowledge_base_id is not None:
        faq_kb_path = dialogflow.KnowledgeBasesClient.knowledge_base_path(
            project_id, faq_knowledge_base_id
        )
        feature_config = {
            "suggestion_feature": {"type_": "FAQ"},
            "suggestion_trigger_settings": {
                "no_small_talk": True,
                "only_end_user": True,
            },
            "query_config": {
                "knowledge_base_query_source": {"knowledge_bases": [faq_kb_path]},
                "max_results": 3,
            },
        }
        conversation_profile["human_agent_assistant_config"][
            "human_agent_suggestion_config"
        ]["feature_configs"].append(feature_config)

    response = client.create_conversation_profile(
        parent=project_path, conversation_profile=conversation_profile
    )

    print("Conversation Profile created:")
    print("Display Name: {}".format(response.display_name))
    # Put Name is the last to make it easier to retrieve.
    print("Name: {}".format(response.name))
    return response

Optional: Sicherheitseinstellungen festlegen

Sie haben die Möglichkeit, Sicherheitsparameter festzulegen, um Probleme wie das Entfernen von Daten und die Datenaufbewahrung zu beheben. Dazu müssen Sie eine SecuritySettings-Ressource erstellen und sie dann über das Feld securitySettings mit einem Unterhaltungsprofil verknüpfen.

Sicherheitseinstellungen, die einem Unterhaltungsprofil hinzugefügt werden, wirken sich nur auf das Verhalten von Agent Assist-Textnachrichten aus. Das Verhalten des Dialogflow-Interaktionsverlaufs wird durch die Sicherheitseinstellungen von Dialogflow gesteuert, die Sie über die Dialogflow CX Console festlegen können.

Unterhaltungen während der Laufzeit verarbeiten

Unterhaltung erstellen

Wenn ein Dialog zwischen einem Endnutzer und einem menschlichen oder virtuellen Kundenservicemitarbeiter beginnt, erstellen Sie eine Unterhaltung. Damit Sie Vorschläge sehen können, müssen Sie auch einen Endnutzer und einen menschlichen Kundenservicemitarbeiter erstellen und dieser Unterhaltung hinzufügen. Dieser Prozess wird in den folgenden Abschnitten beschrieben.

Zuerst müssen Sie eine Unterhaltung erstellen:

REST

Zum Erstellen einer Unterhaltung rufen Sie die Methode create für die Ressource Conversation auf.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Cloud-Projekt-ID
  • LOCATION_ID: Ihre Standort-ID
  • CONVERSATION_PROFILE_ID: Die ID, die Sie beim Erstellen des Unterhaltungsprofils erhalten haben.

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/locations/LOCATION_ID/conversations

JSON-Text anfordern:

{
  "conversationProfile": "projects/PROJECT_ID/locations/LOCATION_ID/conversationProfiles/CONVERSATION_PROFILE_ID",
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/conversations/CONVERSATION_ID",
  "lifecycleState": "IN_PROGRESS",
  "conversationProfile": "projects/PROJECT_ID/locations/LOCATION_ID/conversationProfiles/CONVERSATION_PROFILE_ID",
  "startTime": "2018-11-05T21:05:45.622Z"
}

Das Pfadsegment nach conversations enthält Ihre neue Unterhaltungs-ID.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_conversation(project_id, conversation_profile_id):
    """Creates a conversation with given values

    Args:
        project_id:  The GCP project linked with the conversation.
        conversation_profile_id: The conversation profile id used to create
        conversation."""

    client = dialogflow.ConversationsClient()
    conversation_profile_client = dialogflow.ConversationProfilesClient()
    project_path = client.common_project_path(project_id)
    conversation_profile_path = conversation_profile_client.conversation_profile_path(
        project_id, conversation_profile_id
    )
    conversation = {"conversation_profile": conversation_profile_path}
    response = client.create_conversation(
        parent=project_path, conversation=conversation
    )

    print("Life Cycle State: {}".format(response.lifecycle_state))
    print("Conversation Profile Name: {}".format(response.conversation_profile))
    print("Name: {}".format(response.name))
    return response

Endnutzer als Teilnehmer erstellen

Sie müssen der Unterhaltung sowohl Endnutzer als auch menschliche Kundenservicemitarbeiter hinzufügen, damit Vorschläge angezeigt werden. Fügen Sie der Unterhaltung zuerst einen Endnutzer als Teilnehmer hinzu:

REST

Rufen Sie zum Erstellen eines Endnutzers als Teilnehmer die Methode create für die Ressource Participant auf.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Cloud-Projekt-ID
  • LOCATION_ID: Ihre Standort-ID
  • CONVERSATION_ID: Die Unterhaltungs-ID

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/locations/LOCATION_ID/conversations/CONVERSATION_ID/participants

JSON-Text anfordern:

{
  "role": "END_USER",
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/conversations/CONVERSATION_ID/participants/PARTICIPANT_ID",
  "role": "END_USER"
}

Das Pfadsegment nach participants enthält die neue Teilnehmer-ID für den Endnutzer.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_participant(project_id: str, conversation_id: str, role: str):
    from google.cloud import dialogflow_v2beta1 as dialogflow

    """Creates a participant in a given conversation.

    Args:
        project_id: The GCP project linked with the conversation profile.
        conversation_id: Id of the conversation.
        participant: participant to be created."""

    client = dialogflow.ParticipantsClient()
    conversation_path = dialogflow.ConversationsClient.conversation_path(
        project_id, conversation_id
    )
    if role in ROLES:
        response = client.create_participant(
            parent=conversation_path, participant={"role": role}, timeout=600
        )
        print("Participant Created.")
        print(f"Role: {response.role}")
        print(f"Name: {response.name}")

        return response

Menschlichen Kundenservicemitarbeiter als Teilnehmer erstellen

Fügen Sie der Unterhaltung einen menschlichen Kundenservicemitarbeiter als Teilnehmer hinzu:

REST

Rufen Sie zum Erstellen eines menschlichen Kundenservicemitarbeiters als Teilnehmer die Methode create für die Ressource Participant auf.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Cloud-Projekt-ID
  • LOCATION_ID: Ihre Standort-ID
  • CONVERSATION_ID: Die Unterhaltungs-ID

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/locations/LOCATION_ID/conversations/CONVERSATION_ID/participants

JSON-Text anfordern:

{
  "role": "HUMAN_AGENT",
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/conversations/CONVERSATION_ID/participants/PARTICIPANT_ID",
  "role": "HUMAN_AGENT"
}

Das Pfadsegment nach participants enthält die neue Teilnehmer-ID für den menschlichen Kundenservicemitarbeiter.

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def create_participant(project_id: str, conversation_id: str, role: str):
    from google.cloud import dialogflow_v2beta1 as dialogflow

    """Creates a participant in a given conversation.

    Args:
        project_id: The GCP project linked with the conversation profile.
        conversation_id: Id of the conversation.
        participant: participant to be created."""

    client = dialogflow.ParticipantsClient()
    conversation_path = dialogflow.ConversationsClient.conversation_path(
        project_id, conversation_id
    )
    if role in ROLES:
        response = client.create_participant(
            parent=conversation_path, participant={"role": role}, timeout=600
        )
        print("Participant Created.")
        print(f"Role: {response.role}")
        print(f"Name: {response.name}")

        return response

Nachricht vom menschlichen Kundenservicemitarbeiter hinzufügen und analysieren

Wenn ein Teilnehmer eine Nachricht in die Unterhaltung eingibt, müssen Sie diese Nachricht zur Verarbeitung an die API senden. Agent Assist erteilt Vorschläge basierend auf der Analyse von Nachrichten von menschlichen Kundenservicemitarbeitern und Endnutzern. Im folgenden Beispiel beginnt der Kundenservicemitarbeiter das Gespräch mit der Frage: „Wie kann ich Ihnen helfen?“ In der Antwort werden noch keine Vorschläge zurückgegeben.

REST

Wenn Sie die Nachricht eines menschlichen Kundenservicemitarbeiters für die Unterhaltung hinzufügen und analysieren möchten, rufen Sie die Methode analyzeContent für die Ressource Participant auf.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • CONVERSATION_ID: Die Unterhaltungs-ID
  • PARTICIPANT_ID: Die Teilnehmer-ID für den menschlichen Kundenservicemitarbeiter

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/conversations/CONVERSATION_ID/participants/PARTICIPANT_ID:analyzeContent

JSON-Text anfordern:

{
  "textInput": {
    "text": "How may I help you?",
    "languageCode": "en-US"
  }
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

      {
        "message": {
          "name": "projects/PROJECT_ID/conversations/CONVERSATION_ID/messages/MESSAGE_ID",
          "content": "How may I help you?",
          "languageCode": "en-US",
          "participant": "PARTICIPANT_ID",
          "participantRole": "HUMAN_AGENT",
          "createTime": "2020-02-13T00:01:30.683Z"
        },
        "humanAgentSuggestionResults": [
          {
            "suggestArticlesResponse": {
              "latestMessage": "projects/PROJECT_ID/conversations/CONVERSATION_ID/messages/MESSAGE_ID",
              "contextSize": 1
            }
          }
        ]
      }
    }
  ]
}

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def analyze_content_text(
    project_id: str, conversation_id: str, participant_id: str, text: str
):
    from google.cloud import dialogflow_v2beta1 as dialogflow

    """Analyze text message content from a participant.

    Args:
        project_id: The GCP project linked with the conversation profile.
        conversation_id: Id of the conversation.
        participant_id: Id of the participant.
        text: the text message that participant typed."""

    client = dialogflow.ParticipantsClient()
    participant_path = client.participant_path(
        project_id, conversation_id, participant_id
    )
    text_input = {"text": text, "language_code": "en-US"}
    response = client.analyze_content(
        participant=participant_path, text_input=text_input
    )
    print("AnalyzeContent Response:")
    print(f"Reply Text: {response.reply_text}")

    for suggestion_result in response.human_agent_suggestion_results:
        if suggestion_result.error is not None:
            print(f"Error: {suggestion_result.error.message}")
        if suggestion_result.suggest_articles_response:
            for answer in suggestion_result.suggest_articles_response.article_answers:
                print(f"Article Suggestion Answer: {answer.title}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_faq_answers_response:
            for answer in suggestion_result.suggest_faq_answers_response.faq_answers:
                print(f"Faq Answer: {answer.answer}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_smart_replies_response:
            for (
                answer
            ) in suggestion_result.suggest_smart_replies_response.smart_reply_answers:
                print(f"Smart Reply: {answer.reply}")
                print(f"Answer Record: {answer.answer_record}")

    for suggestion_result in response.end_user_suggestion_results:
        if suggestion_result.error:
            print(f"Error: {suggestion_result.error.message}")
        if suggestion_result.suggest_articles_response:
            for answer in suggestion_result.suggest_articles_response.article_answers:
                print(f"Article Suggestion Answer: {answer.title}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_faq_answers_response:
            for answer in suggestion_result.suggest_faq_answers_response.faq_answers:
                print(f"Faq Answer: {answer.answer}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_smart_replies_response:
            for (
                answer
            ) in suggestion_result.suggest_smart_replies_response.smart_reply_answers:
                print(f"Smart Reply: {answer.reply}")
                print(f"Answer Record: {answer.answer_record}")

    return response

Nachricht des Endnutzers hinzufügen und Vorschläge erhalten

Der Endnutzer fragt den Kundenservicemitarbeiter: „Wie registriere ich mich?“ Die Antwort enthält eine Liste mit vorgeschlagenen Antworten auf die Frage des Endnutzers sowie einen Konfidenzwert für jede Antwort. Alle Antworten stammen aus dem einzigen Wissensdokument zu FAQs, das wir früher in diesem Leitfaden hinzugefügt haben. Der Konfidenzgrenzwert bezieht sich auf die Wahrscheinlichkeit, mit der das Modell der Meinung ist, dass die jeweilige FAQ-Vorschlag für die Anfrage des Kunden relevant ist. Je höher der Konfidenzwert, desto höher ist die Wahrscheinlichkeit, dass relevante Antworten zurückgegeben werden. Es kann jedoch auch dazu führen, dass weniger oder gar keine Antworten zurückgegeben werden, wenn keine verfügbare Option den hohen Grenzwert erreicht. Wir empfehlen einen Startwert von 0,4. Sie können diesen Wert später anpassen, um die Ergebnisse bei Bedarf zu verbessern.

Die Antwort enthält auch die source der Antwort, das Wissensdokument, aus dem die Antwort stammt. Sie sollten die vorgeschlagenen Antworten dem menschlichen Kundenservicemitarbeiter zur Verfügung stellen, der diese Informationen möglicherweise an den Endnutzer weitergibt.

REST

Rufen Sie die Methode analyzeContent für die Resource Participant auf, um eine Endnutzernachricht für die Unterhaltung hinzuzufügen und zu analysieren.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • CONVERSATION_ID: Die Unterhaltungs-ID
  • PARTICIPANT_ID: Die Teilnehmer-ID für den Endnutzer

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/conversations/CONVERSATION_ID/participants/PARTICIPANT_ID:analyzeContent

JSON-Text anfordern:

{
  "textInput": {
    "text": "How do I sign up?",
    "languageCode": "en-US"
  }
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "message": {
    "name": "projects/PROJECT_ID/conversations/fiiJBeHnQIa6Zx_DUKNlEg/messages/Rjv8ErKYS_yIqVR9SW4CpA",
    "content": "How may I help you?",
    "languageCode": "en-US",
    "participant": "PaZQyeiTQgCOyliHkZjs0Q",
    "participantRole": "HUMAN_AGENT",
    "createTime": "1970-01-01T00:00:00Z"
  },
  "humanAgentSuggestionResults": [
    {
      "suggestFaqAnswersResponse": {
        "faqAnswers": [
          {
            "answer": "Sign up for Cloud Storage by turning on the Cloud Storage service in the Google Cloud Platform Console.",
            "confidence": 0.07266401,
            "question": "How do I sign up?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTU0MzE0NDQwOTAwNzEyODU3NjA"
          },
          {
            "answer": "Consider storing your data in a multi-regional or dual-regional bucket location if high availability is a top requirement. This ensures that your data is stored in at least two geographically separated regions, providing continued availability even in the rare event of a region-wide outage, including ones caused by natural disasters. All data, regardless of storage class, is stored redundantly across regions in these types of locations, which allows you to use storage lifecycle management without giving up high availability.",
            "confidence": 0.06937904,
            "question": "How can I maximize the availability of my data?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MzkwMjIyOTA0NDAwMjgxNjAwMA"
          },
          {
            "answer": "From the Cloud Storage documentation click \"Send feedback\" near the top right of the page. This will open a feedback form. Your comments will be reviewed by the Cloud Storage team.",
            "confidence": 0.069021806,
            "question": "How do I give product feedback?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTMxMjU2MDEwODA4NTc1OTE4MDg"
          },
          {
            "answer": "Read the Pricing page for detailed information on pricing, including how Cloud Storage calculates bandwidth and storage usage.",
            "confidence": 0.06681696,
            "question": "Where can I find pricing information?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/ODUxMzkxNTA2MjQzMDIwMzkwNA"
          },
          {
            "answer": "Use Object Versioning. The Object Versioning feature keeps an archived version of an object whenever you overwrite or delete the live version. If you accidentally delete an object, you can copy an archived version of it back to the live version. It's recommended that you use Object Versioning in conjunction with Object Lifecycle Management. Doing so ensures that you don't have multiple, unnecessary copies of an object, which are each subject to storage costs. Caution: Object Versioning does not protect your data if you delete the entire bucket. As an alternative, use object holds. When you place an object hold on an object, it cannot be deleted or overwritten.",
            "confidence": 0.06453417,
            "question": "How do I protect myself from accidental data deletion?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTc3MzcyODcwOTkyODQ5Nzk3MTI"
          },
          {
            "answer": "You can share an individual object with a user or group by adding an entry to that object's access control list (ACL) that grants the user or group READ permission. For step-by-step instructions, see Changing ACLs.",
            "confidence": 0.06336816,
            "question": "I want to let someone download an individual object. How do I do that?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTAxOTkyNTI4MjQ4NTY5ODU2MA"
          },
          {
            "answer": "You can simply install and use the Google Cloud CLI to download the data, even without a Google account. You do not need to activate Cloud Storage or turn on billing for this purpose. You also do not need to create credentials or authenticate to Cloud Storage.",
            "confidence": 0.061990723,
            "question": "I am just trying to download or access some data that is available to the public. How can I do that?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTAyNDMyOTczMTkzNDA0NzQzNjg"
          },
          {
            "answer": "Certain types of content are not allowed on this service; please refer to the Terms of Services and Platform Policies for details. If you believe a piece of content is in violation of our policies, report it here (select See more products, then Google Cloud Storage & Cloud Bigtable).",
            "confidence": 0.060459033,
            "question": "I believe some content hosted on your service is inappropriate, how do I report it?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/NTYzMTYxMTMwMDkxMzA4NjQ2NA"
          },
          {
            "answer": "For most common Cloud Storage operations, you only need to specify the relevant bucket's name, not the project associated with the bucket. In general, you only need to specify a project identifier when creating a bucket or listing buckets in a project. For more information, see When to specify a project. To find which project contains a specific bucket: If you are searching over a moderate number of projects and buckets, use the Google Cloud Platform Console, select each project, and view the buckets it contains. Otherwise, go to the storage.bucket.get page in the API Explorer and enter the bucket's name in the bucket field. When you click Authorize and Execute, the associated project number appears as part of the response. To get the project name, use the project number in the following terminal command: gcloud projects list | grep [PROJECT_NUMBER]",
            "confidence": 0.05914715,
            "question": "I created a bucket, but don't remember which project I created it in. How can I find it?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MTQ4NTQ5ODMzMzc3Njc4NjIyNzI"
          },
          {
            "answer": "Cloud Storage is designed for 99.999999999% (11 9's) annual durability, which is appropriate for even primary storage and business-critical applications. This high durability level is achieved through erasure coding that stores data pieces redundantly across multiple devices located in multiple availability zones. Objects written to Cloud Storage must be redundantly stored in at least two different availability zones before the write is acknowledged as successful. Checksums are stored and regularly revalidated to proactively verify that the data integrity of all data at rest as well as to detect corruption of data in transit. If required, corrections are automatically made using redundant data. Customers can optionally enable object versioning to add protection against accidental deletion.",
            "confidence": 0.05035359,
            "question": "How durable is my data in Cloud Storage?",
            "source": "projects/PROJECT_ID/knowledgeBases/NjQ2MzI1MDQwNTQ2MjYzODU5Mg/documents/NTMxOTA4MTAxMzQxMjg4ODU3Ng",
            "metadata": {
              "document_display_name": "my-document-display-name"
            },
            "answerRecord": "projects/PROJECT_ID/answerRecords/MzMyNTc2ODI5MTY5OTM5MjUxMg"
          }
        ],
        "latestMessage": "projects/PROJECT_ID/conversations/fiiJBeHnQIa6Zx_DUKNlEg/messages/Rjv8ErKYS_yIqVR9SW4CpA",
        "contextSize": 1
      }
    }
  ]
}

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def analyze_content_text(
    project_id: str, conversation_id: str, participant_id: str, text: str
):
    from google.cloud import dialogflow_v2beta1 as dialogflow

    """Analyze text message content from a participant.

    Args:
        project_id: The GCP project linked with the conversation profile.
        conversation_id: Id of the conversation.
        participant_id: Id of the participant.
        text: the text message that participant typed."""

    client = dialogflow.ParticipantsClient()
    participant_path = client.participant_path(
        project_id, conversation_id, participant_id
    )
    text_input = {"text": text, "language_code": "en-US"}
    response = client.analyze_content(
        participant=participant_path, text_input=text_input
    )
    print("AnalyzeContent Response:")
    print(f"Reply Text: {response.reply_text}")

    for suggestion_result in response.human_agent_suggestion_results:
        if suggestion_result.error is not None:
            print(f"Error: {suggestion_result.error.message}")
        if suggestion_result.suggest_articles_response:
            for answer in suggestion_result.suggest_articles_response.article_answers:
                print(f"Article Suggestion Answer: {answer.title}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_faq_answers_response:
            for answer in suggestion_result.suggest_faq_answers_response.faq_answers:
                print(f"Faq Answer: {answer.answer}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_smart_replies_response:
            for (
                answer
            ) in suggestion_result.suggest_smart_replies_response.smart_reply_answers:
                print(f"Smart Reply: {answer.reply}")
                print(f"Answer Record: {answer.answer_record}")

    for suggestion_result in response.end_user_suggestion_results:
        if suggestion_result.error:
            print(f"Error: {suggestion_result.error.message}")
        if suggestion_result.suggest_articles_response:
            for answer in suggestion_result.suggest_articles_response.article_answers:
                print(f"Article Suggestion Answer: {answer.title}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_faq_answers_response:
            for answer in suggestion_result.suggest_faq_answers_response.faq_answers:
                print(f"Faq Answer: {answer.answer}")
                print(f"Answer Record: {answer.answer_record}")
        if suggestion_result.suggest_smart_replies_response:
            for (
                answer
            ) in suggestion_result.suggest_smart_replies_response.smart_reply_answers:
                print(f"Smart Reply: {answer.reply}")
                print(f"Answer Record: {answer.answer_record}")

    return response

Unterhaltung abschließen

Verwenden Sie am Ende der Unterhaltung die API, um die Unterhaltung abzuschließen.

REST

Rufen Sie zum Abschließen der Unterhaltung die Methode complete für die Ressource conversations auf.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: ID Ihres GCP-Projekts
  • CONVERSATION_ID: Die ID, die Sie beim Erstellen der Unterhaltung erhalten haben

HTTP-Methode und URL:

POST https://dialogflow.googleapis.com/v2/projects/PROJECT_ID/conversations/CONVERSATION_ID:complete

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/PROJECT_ID/conversations/CONVERSATION_ID",
  "lifecycleState": "COMPLETED",
  "conversationProfile": "projects/PROJECT_ID/conversationProfiles/CONVERSATION_PROFILE_ID",
  "startTime": "2018-11-05T21:05:45.622Z",
  "endTime": "2018-11-06T03:50:26.930Z"
}

Python

Richten Sie zur Authentifizierung bei Agent Assist Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def complete_conversation(project_id, conversation_id):
    """Completes the specified conversation. Finished conversations are purged from the database after 30 days.

    Args:
        project_id: The GCP project linked with the conversation.
        conversation_id: Id of the conversation."""

    client = dialogflow.ConversationsClient()
    conversation_path = client.conversation_path(project_id, conversation_id)
    conversation = client.complete_conversation(name=conversation_path)
    print("Completed Conversation.")
    print("Life Cycle State: {}".format(conversation.lifecycle_state))
    print("Conversation Profile Name: {}".format(conversation.conversation_profile))
    print("Name: {}".format(conversation.name))
    return conversation

Optionen für API-Anfragen

In den vorherigen Abschnitten wurde gezeigt, wie Sie ein ConversationProfile erstellen, um Vorschläge zu erhalten. In den folgenden Abschnitten werden einige optionale Funktionen beschrieben, die Sie während einer Unterhaltung implementieren können.

Pub/Sub-Benachrichtigungen für Vorschläge

In den vorherigen Abschnitten wurde das ConversationProfile nur mit einem menschlichen Kundenservicemitarbeiter erstellt. Während der Unterhaltung mussten Sie die API aufrufen, um Vorschläge zu erhalten, nachdem die einzelnen Nachrichten zur Unterhaltung hinzugefügt wurden. Wenn Sie lieber Benachrichtigungsereignisse zu Vorschlägen erhalten möchten, können Sie das Feld notificationConfig beim Erstellen des Unterhaltungsprofils festlegen. Diese Option verwendet Cloud Pub/Sub, um Benachrichtigungen mit Vorschlägen an Ihre Anwendung zu senden, wenn die Unterhaltung fortgesetzt wird und neue Vorschläge verfügbar sind.