테스트 함수 코드 완성을 위한 프롬프트 만들기(생성형 AI)

게시자 코드 모델로 작업하는 프롬프트를 만들어 테스트 함수 코드 완성 제안을 만듭니다.

코드 샘플

C#

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용C# 설정 안내를 따르세요. 자세한 내용은 Vertex AI C# API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Collections.Generic;
using System.Linq;
using Value = Google.Protobuf.WellKnownTypes.Value;

public class PredictCodeCompletionTestFunctionSample
{
    public string PredictTestFunction(
        string projectId = "your-project-id",
        string locationId = "us-central1",
        string publisher = "google",
        string model = "code-gecko@001")
    {
        // Initialize client that will be used to send requests.
        // This client only needs to be created once,
        // and can be reused for multiple requests.
        var client = new PredictionServiceClientBuilder
        {
            Endpoint = $"{locationId}-aiplatform.googleapis.com"
        }.Build();

        // Configure the parent resource.
        var endpoint = EndpointName.FromProjectLocationPublisherModel(projectId, locationId, publisher, model);

        var prefix = @"
public static string ReverseString(string s)
{
    char[] chars = s.ToCharArray();
    Array.Reverse(chars);
    return new string(chars);
}
public static void TestEmptyInputString()";

        var instances = new List<Value>
        {
            Value.ForStruct(new()
            {
                Fields =
                {
                    ["prefix"] = Value.ForString(prefix),
                }
            })
        };

        var parameters = Value.ForStruct(new()
        {
            Fields =
            {
                { "temperature", new Value { NumberValue = 0.2 } },
                { "maxOutputTokens", new Value { NumberValue = 64 } }
            }
        });

        // Make the request.
        var response = client.Predict(endpoint, instances, parameters);

        // Parse and return the content.
        var content = response.Predictions.First().StructValue.Fields["content"].StringValue;
        Console.WriteLine($"Content: {content}");
        return content;
    }
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictCodeCompletionTestFunctionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";

    // Learn how to create prompts to work with a code model to create code completion suggestions:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-completion-prompts
    String instance =
        "{ \"prefix\": \""
            + "def reverse_string(s):\n"
            + "  return s[::-1]\n"
            + "def test_empty_input_string()"
            + "}";
    String parameters = "{\n" + "  \"temperature\": 0.2,\n" + "  \"maxOutputTokens\": 64,\n" + "}";
    String location = "us-central1";
    String publisher = "google";
    String model = "code-gecko@001";

    predictTestFunction(instance, parameters, project, location, publisher, model);
  }

  // Use Codey for Code Completion to complete a test function
  public static void predictTestFunction(
      String instance,
      String parameters,
      String project,
      String location,
      String publisher,
      String model)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value instanceValue = stringToValue(instance);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue);

      Value parameterValue = stringToValue(parameters);

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
    }
  }

  // Convert a Json string to a protobuf.Value
  static Value stringToValue(String value) throws InvalidProtocolBufferException {
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(value, builder);
    return builder.build();
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'code-gecko@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  const prompt = {
    prefix:
      'def reverse_string(s): \
          return s[::-1] \
       def test_empty_input_string()',
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.2,
    maxOutputTokens: 64,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get code completion response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

callPredict();

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from vertexai.language_models import CodeGenerationModel

parameters = {
    "temperature": 0.2,  # Temperature controls the degree of randomness in token selection.
    "max_output_tokens": 64,  # Token limit determines the maximum amount of text output.
}

code_completion_model = CodeGenerationModel.from_pretrained("code-gecko@001")
response = code_completion_model.predict(
    prefix="""def reverse_string(s):
        return s[::-1]
    def test_empty_input_string()""",
    **parameters,
)

print(f"Response from Model: {response.text}")

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.