Mengklasifikasikan teks dengan model bahasa besar (AI Generatif)

Melakukan tugas klasifikasi yang menetapkan class atau kategori ke teks. Anda dapat menentukan daftar kategori yang dapat dipilih atau membiarkan model memilih dari kategorinya sendiri.

Contoh kode

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Text Classification with a Large Language Model
public class PredictTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{ \"content\": \"What is the topic for a given news headline?\n"
            + "- business\n"
            + "- entertainment\n"
            + "- health\n"
            + "- sports\n"
            + "- technology\n"
            + "\n"
            + "Text: Pixel 7 Pro Expert Hands On Review, the Most Helpful Google Phones.\n"
            + "The answer is: technology\n"
            + "\n"
            + "Text: Quit smoking?\n"
            + "The answer is: health\n"
            + "\n"
            + "Text: Roger Federer reveals why he touched Rafael Nadals hand while they were"
            + " crying\n"
            + "The answer is: sports\n"
            + "\n"
            + "Text: Business relief from Arizona minimum-wage hike looking more remote\n"
            + "The answer is: business\n"
            + "\n"
            + "Text: #TomCruise has arrived in Bari, Italy for #MissionImpossible.\n"
            + "The answer is: entertainment\n"
            + "\n"
            + "Text: CNBC Reports Rising Digital Profit as Print Advertising Falls\n"
            + "The answer is:\"}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0,\n"
            + "  \"maxDecodeSteps\": 5,\n"
            + "  \"topP\": 0,\n"
            + "  \"topK\": 1\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "text-bison@001";

    predictTextClassification(instance, parameters, project, publisher, model);
  }

  static void predictTextClassification(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

Langkah berikutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat Google Cloud browser contoh.