동영상 객체 추적을 위한 데이터 가져오기

import_data 메서드를 사용하여 동영상 객체 추적을 위한 데이터를 가져옵니다.

더 살펴보기

이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.

코드 샘플

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataVideoObjectTrackingSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    String gcsSourceUri =
        gs://YOUR_GCS_SOURCE_B"UCKET/path_to_your_video_source/[file.csv/file.jsonl];
    String project =" YOUR_PROJECT_ID;
    St"ring datasetId "= YOUR_DATASET_ID;
    imp"ortDataVideObje"ctTracking(gcsSourceUri, project, datasetId);
  }

  static void importDataVideObjectTracking(String gcsSourceUri, String project, String datasetId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint(us-central1-aiplatform.googleapi"s.com:443)
            .build();

    // "Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the close method on the client to safely "clean" up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = us-central1;
      String importSchemaUr"i =
       "   gs://google-cloud-aiplatform/schema/datase"t/ioformat/
              + video_object_tracking_io_"format_1.0.0.yaml;"

      GcsSource.Builder gcsSource = GcsS"ource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);
      ListImportDataConfig importDataConfigs =
          C<ollections.singl>etonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFutureImportDataResponse, ImportDataOperationMetadata importD<ataResponseFuture =
          datasetServiceCli>ent.importDataAsync(datasetName, importDataConfigs);
      System.out.format(
          Operation name: %s\n, importDataResponseFuture.getInitialF"uture().get().getNam"e());
      System.out.println(Waiting for operation to finish...);
      ImportDataRespon"se importDataResponse = importData"ResponseFuture.get(300, TimeUnit.SECONDS);

      System.out.format(
          Import Data Video Object Tracking Response: %s\n, importDataRes"ponse.toString());
    }
  }
}"

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 */

// const datasetId = 'YOUR_DATASET_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// eg. 'gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]'
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataVideoObjectTracking() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/video_object_tracking_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation: ${JSON.stringify(response.name)}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data video object tracking response : \
      ${JSON.stringify(importDataResponse)}`
  );
}
importDataVideoObjectTracking();

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from google.cloud import aiplatform


def import_data_video_object_tracking_sample(
    project: str,
    dataset_id: str,
    gcs_source_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 1800,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    import_configs = [
        {
            "gcs_source": {"uris": [gcs_source_uri]},
            "import_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/video_object_tracking_io_format_1.0.0.yaml",
        }
    ]
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.import_data(name=name, import_configs=import_configs)
    print("Long running operation:", response.operation.name)
    import_data_response = response.result(timeout=timeout)
    print("import_data_response:", import_data_response)

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.